Upper Devonian-Lower Carboniferous conodont biostratigraphy in the Shotori Range, Tabas area, Central-East Iran Microplate

Ali Bahrami, Carlo Corradini & Mehdi Yazdi

A. Bahrami - Department of Geology, University of Isfahan, Isfahan, I.R. Iran; Bahramigeo@yahoo.com
C. Corradini - Dipartimento di Scienze della Terra, Università di Cagliari, via Trentino 51, 09127 Cagliari, Italy; corradin@unica.it
M. Yazdi - Department of Geology, University of Isfahan, Isfahan, I.R. Iran; Yazdimehdi@yahoo.com

KEY WORDS - Conodonts, Shotori Range, Iran, Devonian, Carboniferous.

ABSTRACT - A rich and diverse conodont fauna represented by fifty-six taxa belonging to fifteen genera is described from three sections (Ghale-kalaghu, Howz-e-Dorah 1 and Howz-e-Dorah 2) in the southern Shotori Range (central Iran). The association, dominated by Polygnathus, has allowed a detailed biostratigraphy across the Devonian/Carboniferous boundary interval to be constructed, ranging from the Uppermost marginifera Zone to the anchoralis-latus Zone. The D/C boundary is narrowly constrained within a condensed interval at the base of the “Mush Horizon” between the Shishtu 1 and Shishtu 2 subformations.

INTRODUCTION

During the Palaeozoic Iran was situated at the northern margin of Gondwana (Berberian & King, 1981; Scotese, 2001), with the only exception of a small area in the north-east, the Kopé-Dagh, which was part of Laurussia (Berberian & King, 1981). The Gondwanan part was located about 20°-25° south of the equator (Golonka et al., 1994) and was covered by a large shelf sea (Wendt et al., 2002). Structurally Iran is a collage of several microplates, and it can be subdivided into six units. The study area is within the “Central-East Iran Microplate”, which is bound by major faults: the Great Kavir Fault in the NW, the Nain-Baft Fault in the SW, and the Hari rud Fault in the E. It is commonly accepted that this microplate was subject to a 135° anticlockwise rotation since the Late Triassic (Soffel et al., 1996; Wendt et al., 2005). One of the best Palaeozoic sequence of Iran is here exposed.

The Shotori Range is located in the northeastern part of the “Central-East Iran Microplate”, east of Tabas, and is an almost 100 km long mountain chain, consisting of a sequence ranging from the Lower Devonian to the Palaeogene (Wendt et al., 2005), even if with several hiatuses. Devonian and Carboniferous strata are represented by thick sequences of shallow water sediments. Several sections were measured by various authors to describe the stratigraphy of the region, but never in detail, probably due to the thickness of the sections.

This paper is the first detailed report on conodont stratigraphy across the Devonian-Carboniferous boundary (DCB) in the Shotori Range, based on close sampling of three sections in the southern part of the chain (Fig. 1) and a contribution to the “International Working Group on the redefinition of the Devonian-Carboniferous Boundary”, recently established by the International Commission on Stratigraphy.

THE DEVONIAN AND CARBONIFEROUS OF THE SHOTORI RANGE

One of the best Devonian and Carboniferous sequence of Iran is exposed in the Shotori Range. The base is marked by several tens of meters of red sandstone of the Padaha Formation. Fossils are rare in this unit and the Lower-Middle Devonian age is inferred on the basis of adjacent units (Wendt et al., 2002). The sequence continues with the Sizbar Formation, mostly dolomites with rare calcareous intercalations. Wendt et al. (2002) suggested a shallow subtidal to supratidal depositional environment, and defined a Givetian age on the basis of conodonts from Kalshaneh, in the southern part of the Central-East Iran Microplate.
The sequence continues with the Bahram Formation, up to 500 m thick. It consists of thick bedded dark grey limestone in the lower part and massive brown dolomite with minor green shale intercalations in the upper part. The limestones are very fossiliferous, and contain conodonts, brachiopods, tentaculitids, crinoids, bryozoans, rugose and tabulate corals, stromatoporoids, trilobites, and rare molluscs (Wendt et al., 2002). The age of the Bahram Fm in the Shotori Range is limited to the lower Frasnian, whereas in other parts of Iran it includes Famennian strata.

The Bahram Formation is conformably overlain by the Shishtu Formation, a unit of complex lithology (Stocklin & Nabavi, 1971), that is informally subdivided into two subformations: “Shishtu-1” and “Shishtu-2”.

Shishtu-1 subformation is more than 300 m thick and includes dark green shale interbedded with quartzitic sandstones and intercalations of fossiliferous limestone; the topmost 28 m (beds 23-26 of Stocklin et al., 1965) are represented by highly fossiliferous shale, sandstone, oolitic limestone, and iron oolites, which have been named Cephalopod bed (Stocklin et al., 1965). This unit, composed of several variable lithological horizons, ranges from the middle Frasnian to the late Famennian. The base of the Cephalopod bed is diachoronus, and ranges from late Frasnian in Kale Sardar to Famennian in Howz e-Dorah (Wendt et al., 1997, 2005; Yazdi, 1999).

Shishtu-2 is about 250 m thick and consists of interbedded of limestone and shale. It starts with the so-called “Mush Horizon”: a dark grey shale with an intercalation of strongly gypsiferous pink shale and a thin layer of brachiopod limestone, which can be used to correlate the base of the Tournaisian.

Fig. 1 - Geological map of the area around the Espahak village, Tabas Province, with indication of the studied sections (redrawn and simplified after Stocklin & Nabavi, 1969). The structural units of Iran show the position of studied area in Central-East-Iran Microplate (after Wendt et al., 2005).
The Shishtu Formation as a whole ranges from late Frasnian to Visean and the Devonian-Carboniferous boundary can be traced between the Cephalopod Bed and the “Mush Horizon” at the boundary between Shishtu-1 and Shishtu-2 subformations. Several authors (e.g., Wendt et al., 2005) claim the occurrence of a large hiatus across the boundary, which may include part of the late Famennian and the early Tournaisian.

The Shishtu Formation in unconformably overlaid by the Sardar Formation, a succession of light-green shales with intercalations of sandstones, quartzite, and fossiliferous limestones (Stocklin et al., 1965) of Visean-Moscovian age.

In general the fossil contents of the Devonian and Carboniferous rocks in the Shotori Range is relatively abundant and have been described by several authors: goniatites (Walliser, 1966; Yamini, 1996; Becker et al., 2004; Ashuri & Yamini, 2006), brachiopods (Sartenaer, 1966; Rastkar, 1996), crinoids (Flügel, 1966; Webster et al., 2007), receptaculitids (Flügel, 1961), trilobites (Haas & Mensink, 1970; Haas, 1994; Morzadec, 2002; Feist et al., 2003), gastropods (Ashuri, 1997a), vertebrate micro remains (Yazdi & Turner, 2000; Hairapetian et al., 2000, 2008; Hairapetian & Ginter, 2010) and palynomorphs (Moussavi, 1995; Ghavidel-Syooki & Moussavi, 1996). Several papers address conodonts, mainly for biostratigraphical purposes (Ashouri, 1990, 1995, 1997b, 1998, 2001, 2002, 2004, 2006), Yazdi (1999) and Shishtu-2 subformations. Several authors (e.g., Corradini et al., 2011) and several new protognathodids, Corradini et al., 2011) and several new scenarios, taxonomic revisions of conodont taxa with some potential as possible tools for defining the boundary are in progress (early siphonodellids, Kaiser & Corradini, 2011; proognathodids, Corradini et al., 2011) and several new sections are under investigation around the world.

PREVIOUS PAPERS ON CONODONTS ACROSS THE D/C BOUNDARY IN IRAN

Sediments of Late Devonian and Early Carboniferous age are widespread in Iran, and several authors focused on these strata, mainly for stratigraphical reasons. However, most researches did not provide the precise age of the various formations due to either scarcity of biostratigraphic relevant fauna (mainly conodonts) or distance of sampling.

Several localities were studied in the Central-East Iran Microplate, mainly in the area around Tabas (Shotori Range, Ardekan and Özbak-kuh Mts) by Ashuri (1990, 1997b, 1998, 2001, 2002, 2004, 2006), Yazdi (1999) and Hairapetian & Yazdi (2003). All these authors agree on the occurrence of a gap between the Devonian and the Carboniferous, but provided different data on the extension of that hiatus in the various sections. Wendt et al. (2005), on the basis of a few conodont samples, claimed a gap which includes the uppermost Famennian and the basal Tournaisian. More to the west, Boncheva et al. (2007) illustrated a lower Carboniferous conodont fauna from the Ramsheh section, south of Isfahan.

THE D/C BOUNDARY: CURRENT UNDERSTANDING

The base of the Carboniferous System is defined by the First Appearance Datum (FAD) of the conodont species *Siphonodella sulcata*, within the *S. praesulcata-S. sulcata* lineage and the GSSP is located in the La Serre Trench E’ section, Montagne Noire, France (Paproth et al., 1991). Flajs & Feist (1988) published a biometric study of *S. praesulcata* and *S. sulcata* based on the La Serre faunas, demonstrating that transitional forms are very common. Despite these taxonomic uncertainties, the FAD of *S. sulcata* was chosen to define the base of the Tournaisian, but difficulties in discriminating *S. praesulcata* from *S. sulcata* arose immediately (e.g., Ji, 1987; Flajs & Feist, 1988; Wang & Yin, 1984). Further studies on the stratotype section have revealed a series of problems, such as lack of other important stratigraphic guides and the existence of reworking (e.g., Flajs & Feist, 1988; Ziegler & Sandberg, 1996; Casier et al., 2002; Kaiser, 2009).

A redefinition of the Devonian/Carboniferous boundary was redefined necessary, and in 2008 the International Commission on Stratigraphy established a working group with the goal to propose new criteria for defining the boundary and to find a new GSSP. In this scenario, taxonomic revisions of conodont taxa with some potential as possible tools for defining the boundary are in progress (early siphonodellids, Kaiser & Corradini, 2011; proognathodids, Corradini et al., 2011) and several new sections are under investigation around the world.

THE STUDIED SECTIONS

Three sections have been measured in the southern part of the Shotori Range, approximately 75 km southeast of Tabas, close to the village of Sorond and the Chiruk Silicic Sand mine (Fig. 1). The area is accessible by a unpaved track off the Tabas-Dihuk road.

The Ghale-kalaghu section

The Ghale-kalaghu section (Figs 2, 3a-c) is located about 1 km south of the Chiruk mine, at coordinates: base 33°20’40.86”N - 57°20’09.72”E and top: 33°20’49.19”N - 57°20’05.84”E.

The section starts with about 30 m of Upper Devonian Shishku 1 subformation, the “Cephalopod bed”, here consisting of yellow to brown sandy limestone, yellow to gray limestone, and alternating sandy limestone and gray shale; the uppermost part of the section is represented by about 3 meters of rusty red iron oolitic sandy limestone. Fossils are quite abundant in the Cephalopod bed: ammonoids, brachiopods, bivalves, gastropods, ostracods, bryozoans, crinoids, vertebrate micro remains, and conodonts are present, sometimes covered by chamosite and iron minerals. At the upper surface of iron sandy oolitic limestone unit, polygonal sedimentary structures (Fig. 3e) are present. The microbial tubules show several...
concentric layers of stepwise growth around a core that were referred to bacterial activities by Mahmudy Gharaie et al. (2009).

Overlying the Cephalopod bed is a thick sequence (about 83 m) of the lower part of the Shishtu-2 subformation. It starts with the “Mush Horizon”, consisting of predominant blackish-gray to blackish-brown organic-rich pyritic shale and intercalation of strongly gypsiferous pink shale; a thin layer of phosphate brachiopod and gastropod limestone is in the lower part. The upper part of the Mush Horizon is characterized by alternation of limestone, marl, thin gray shale and sandy limestone. The section ends with a thick sequence of yellow to gray platy limestone. Brachiopods, solitary rugose corals, crinoids, rare trilobites, and bivalves occur in this unit.

Fig. 2 - Stratigraphic log, samples position, conodont occurrences and biozonation of the Ghale-kalaghu section. Abbreviations of conodont genera: Bi. = Bispathodus; Br. = Branmehla; Cly. = Clydagnostus; Doli. = Doliognathus; Doll. = Dollymae; Elict. = Elictognathus; Gn. = Gnathodus; I. = Icriodus; M. = Mehlina; P. = Polygnathus; Pr. = Protognathodus; Ps. = Pseudopolygnathus; Sc. = Scaphignathus; St. = Siphonodella.
Fig. 3 - Selected views of the studied sections: a: Panoramic view of the Ghale-kalaghu section, with indication of the lithostratigraphic units, the Cephalopod bed, the Mush Horizon and position of the Frasnian/Famennian and the Devonian/Carboniferous boundaries. b: View of the contact between the Cephalopod bed and the Mush Horizon in the Ghale-kalaghu section. c: Detail of the sampled interval in the Ghale-kalaghu section. d: Detail of the sampled interval in the Howz-e-Dorah 1 section. e: microbial tubules in the iron oolitic sandy limestones at the top of Cephalopod bed in the Ghale-kalaghu section. f: close up of iron oolitic sandy limestone in the Cephalopod bed in the Howz-e-Dorah 1 section.
Howz-e-Dorah 1 section

The Howz-e-Dorah 1 section (Figs 3d, 4) is located about 500 m northeast of the Chiruk mine, at coordinates: base 33°22'21.07"N - 57°20'22.85"E and top: 33°22'26.64"N - 57°20'29"E.

The measured section consists of 159.7 m of strata, including 33.5 m of upper part of Devonian Shishu-1 subformation, and 126.2 m of lower part of Shishu-2 subformation. This section was studied by Yazdi (1999) and Wendt et al. (1997, 2005), who gave a general age
to the units, but did not sample in detail across the DCB. The lithostratigraphy and fauna are very similar to the Ghale-kalaghu section.

Howz-e-Dorah 2 section

The Howz-e-Dorah 2 section (Fig. 5) is located close to section 1 in the same flank of the hill, at coordinates: base 33°22'16.67"N - 57°20'23"E and top: 33°22'26.24"N - 57°20'25.48"E.

The Howz-e-Dorah 2 section includes 3 m in uppermost of Cephalopod bed and 2.7 m thick of black shale at the base of the “Mush Horizon”.

CONODONT DATA

Ninety-three conodont samples (3-4 kg each) were collected from the studied sections: 35 samples from the Ghale-kalaghu section, 39 samples from the Howz-e-Dorah 1 section and 19 samples from the Howz-e-Dorah 2 section. The samples were processed with the conventional acetic and/or formic acid technique. Sixteen samples were barren and 77 samples yielded conodonts.

More than 2900 conodont elements were collected (Tabs 1-3). Conodonts are not abundant, only a few samples yielded more than a dozen elements/kg, where higher yields occurred in the upper part of the studied interval, with a maximum of 139 elements/kg in HD 38, 108 elements/kg in GH 26, and 54 elements/kg in HB 10.

Preservation of the conodonts is generally good, and only in some levels of the red hematitic sandy oolitic limestone (Cephalopod bed) are specimens encrusted by chamosite and other iron minerals (i.e.: HB 3-5). In the lower parts of the Mush Horizon (i.e. HD 13-16 and GH 22-26) most of specimens are broken, eroded, and incomplete; in the upper part of the sections, samples GH 37-43 and HD 30-38 (isosticha-Upper crenulata Zone to anchoralis-latus Zone) the preservation of the fauna is quite good without any contamination or wear.

The color of conodonts is brown (C.A.I.=3.5-4) in the lower part of the section, up to sample GH 36 and HD 29, then suddenly turn to dark black (C.A.I.=5) in sample s GH 37 and HD 30 to the top of sections.

Fifty-six species and subspecies belonging to 15 genera (Bispathodus, Branmehla, Clydagnosthus, Dolynagnosthus, Dollymiae, Elicagnosthus, Gnathodus, Icriodius, Mehlina, Palmatolepis, Polyagnosthus, Protagnosthus, Pseudopolyagnosthus, Sccaphagnosthus, and Siphonodella) were discriminated (Tabs 1-3). The association is dominated by the shallow water genera...
Polygnathus and Gnathodus; palmatolepids and icriodids are scarce; Scaphignathus is common in the lowermost part of the sections. The collection is stored in the Department of Geology of the Islamkhan University under acronym EUIC. Repository numbers of the figured specimens can be obtained from the plate captions.

BIOSTRATIGRAPHY

The conodont zonation for the Late Devonian and the Early Carboniferous utilized was proposed by Ziegler & Sandberg (1990) and Sandberg et al. (1978), respectively. Recently two alternative schemes were proposed for selected regions (i.e.: Corradini, 2008) or time frame (Kaiser et al., 2009). A new scheme across the Devonian/Carboniferous boundary should be prepared as soon as the revision of the main taxa used for biostratigraphy in this time span is concluded.

All these zonal schemes are based on pelagic index species, mainly utilizing species of *Palmatolepis*, *Bispathodus* and *Siphonodella*, that are scarce in the shallow water sediments of the Tabas area. Therefore, when the markers are absent, species of *Polygnathus* and *Pseudopolygnathus* are used to identify some of the zonal boundaries. As a result it is not possible to recognize all the zones, but only longer biointervals that group some adjacent biozones. Twelve biointervals have been discriminated.

Uppermost marginifera-Upper trachytera zones

The Uppermost *marginifera*-Upper *trachytera* zones are recognized in the lower part of the sections (GH 11-14, HD 1-6, HB 1-4), by the occurrence of *Scaphignathus velifer velifer*. This species is the marker of the Uppermost *marginifera* Zone (= *velifer* Zone sensu Corradini, 2008) and ranges to the Upper *trachytera* Zone (Ziegler & Sandberg, 1984). None of the associated species allow a further subdivision of this interval. *Scaphignathus velifer* and *Polygnathus semicostatus* are very abundant in this interval.

postera Zone

An undifferentiated *postera* Zone is represented by a thin interval in the three sections (GH 15-16, HD 7, HB...
expansa Zone

An undifferentiated expansa Zone is recognized in the upper part of the Cephalopod bed (samples GH 17-19-2, HD 8-10, HB 7). The lower boundary is marked by the Last Occurrence of Scaphognathus vel. levis, the upper boundary by the first occurrence of Siphonodella expansa.
praesulcata. *Polygnathus semicostatus*, which became extinct at the top of the zone (Ji & Ziegler, 1993), is always dominant, representing more than 50% of the association.

praesulcata Zone

An undifferentiated *praesulcata* Zone is identified by the occurrence of the marker *Siphonodella praesulcata* in the Ghale-kalaghu section (GK 19-3) and in the Howz-e-Dorah 1 section (HD 10-1). The zone is represented by a few centimetres of rock at the very top of the Cephalopod bed, that have not been sampled in the Howz-e-Dorah 2 section. The fauna is very scarce and poorly preserved.

sulcata Zone

The *sulcata* Zone is recognized at the very base of the Mush Horizon, based on the occurrence of a single specimen of *Siphonodella sulcata* in each of the sections (GH 20-22, HD 11-13, HB 8). The upper boundary is defined by the fist occurrence of either *St. duplicata* or *Polygnathus rostratus*. *Polygnathus inornatus* and *Po. longiposticus* are common in this interval.

Lower duplicata Zone

The Lower *duplicata* Zone is recognized from in the lower part of the Mush Horizon (GH 23-26, HD 14-18,
HB 9-15). The marker, *Siphonodella duplicata*, is always present, but only in the Ghale Kalaghu section does it enter at the base of the zone; in the Howz-e-Dorah 1 and 2 sections the lower boundary is identified by the entry of *Polygnathus rostratus*, which, according to Barskov et al. (1991) has its first appearance at the base of this zone. *Polygnathus inornatus* and *Po. longiposticus* are very abundant in this interval.

Upper duplicata Zone

The Upper *duplicata* Zone is recognized in a narrow interval (GH 28-29, HD 19-22, HB 16) by the entry of the marker *Siphonodella cooperi* M1 or that of *Si. obsoleta*, which, according to Sandberg et al. (1978) enters slightly higher in the zone. *Polygnathus inornatus* and *Po. longiposticus* are dominant in this interval.

sandbergi Zone

It is not possible precisely locate the base of the *sandbergi* Zone, but the occurrence of *Siphonodella quadruplicata* is used to discriminate it in beds GH 30, HD 23-27 and HB 17. *Siphonodella quadruplicata* have its first occurrence within the zone (Sandberg et al., 1978). The association is dominated by polygnathids, mainly *Po. inornatus* and *Po. longiposticus*, and in the Howz-e-Dorah 1 section *Po. c. communis*.

Lower crenulata Zone

The Lower *crenulata* Zone is based on the occurrence of *Siphonodella crenulata*, in the thick shaly interval in the upper part of the Mush Horizon (beds GH 32-34, HD 28-29 and HB 19) where the conodont fauna is in general scarce and poorly preserved. *Polygnathus inornatus*

EXPLANATION OF PLATE 2

Figs 1-2 - *Siphonodella praesulcata* Sandberg, 1972.
1 - Upper (a) and lower (b) views of EUIC 5839, sample HD 10-1 (*praesulcata* Zone),
2 - Upper (a) and lower (b) views of EUIC 5840, sample GH 19-3 (*praesulcata* Zone).

Figs 3-4 - *Siphonodella sulcata* (Huddle, 1934).
3 - Upper (a) and lower (b) views of EUIC 5841, sample HD 11 (*sulcata* Zone),
4 - Upper (a) and lower (b) views of EUIC 5842, sample GH 20 (*sulcata* Zone).

Fig. 5 - *Siphonodella duplicata* (Branson & Mehl, 1934) Morphotype 4. Upper view of EUIC 5843, sample HD 16 (*Lower duplicata* Zone).

Figs 6, 12 - *Siphonodella duplicata* (Branson & Mehl, 1934) Morphotype 2.
6 - Upper (a) and lower (b) views of EUIC 5844, sample GH 23 (*Lower duplicata* Zone),
12 - Upper (a) and lower (b) views of EUIC 5845, sample HD 15 (*Lower duplicata* Zone).

Figs 7-8 - *Siphonodella crenulata* Cooper, 1939 Morphotype 2.
7 - Upper view of EUIC 5846, sample HD 28 (*Lower crenulata* Zone),
8 - Upper view of EUIC 5847, sample GH 32 (*Lower crenulata* Zone).

Fig. 9 - *Siphonodella quadruplicata* Branson & Mehl, 1934. Upper view of EUIC 5848, sample HD 23 (*sandbergi* Zone).

10 - Upper view of EUIC 5849, sample HB 19 (*Lower crenulata* Zone),
13 - Upper view of EUIC 5850, sample GH 28 (*Upper duplicata* Zone).

11 - Upper view of EUIC 5851, sample GH 30 (*sandbergi* Zone),
14 - Upper oblique view of EUIC 5852, sample HD 19 (*U. duplicata* Zone).

Fig. 15 - *Pseudopolygnathus dentilinateus* Branson, 1934. Upper (a) and Lower (b) views of EUIC 5855, sample HB 9 (*Lower duplicata* Zone).

Figs 16-17 - *Polygnathus communis communis* Branson & Mehl, 1934.
16 - Upper view (a) and Lower view (b) of EUIC 5833 sample HD 10-1 (*praesulcata* Zone),
17 - Upper view of EUIC 5832, sample GH 20 (*sulcata* Zone).

Fig. 18 - *Polygnathus inornatus rostratus* Rhodes, Austin & Druce, 1969. Upper view of EUIC 5856, sample HD 15 (*Lower duplicata* Zone).

19 - Upper lateral view of EUIC 1922, sample GH 19-3 (*Lower praesulcata* Zone),
20 - Upper view of EUIC 1923, sample GH 19-1 (*expansa* Zone),

Figs 22-24 - *Pseudopolygnathus primus* Branson & Mehl, 1934.
22 - Upper view of EUIC 5878, sample HD 14 (*Lower duplicata* Zone),
23 - Upper view of EUIC 5879, sample GH 20 (*sulcata* Zone),
24 - Lower view of EUIC 5880, sample GH 20 (*sulcata* Zone).
and *Po. longiposticus* that were dominant in the lower Tournaisian became extinct in the upper part of the zone.

isosticha - Upper crenulata Zone

The entry of *Gnathodus delicatus*, in the lower part of the carbonate unit above the Mush Horizon allows to recognize the *isosticha* - *Upper crenulata* Zone (beds GH 37-39, HD 30-32). The association is quite scarce in this interval, where *Bispathodus stabilis*, *Ps. tr. triangulus* and the last representatives of *Siphonodella* have their last occurrence. *Gnathodus punctatus* has its first occurrence within this zone.

typicus Zone

An undifferentiated *typicus* Zone is defined by the occurrence of *Gnathodus typicus*, and of

\[Pseudopolygnathus oxypageus. \]

Pseudopolygnathus oxypageus marks the upper part of the Zone (Lane et al., 1980); it is difficult to precisely locate the base of the zone, due to poorness of conodont fauna and distance of samples.

anchoralis-latus Zone

The *anchoralis-latus* Zone is recognized in the upper part of the studied sections (beds GH 41-43, HD 37-38) by the entry of *Gn. pseudosemiglaber*, because the marker *Dolyognathus latus* enters in a higher level. According to Lane et al. (1980), *Gn. pseudosemiglaber* has its FAD within this zone. The fauna is abundant and conodonts are very well preserved in this interval.

EXPLANATION OF PLATE 3

1. - Upper view of EUIC 5862, sample HD 37 (anchoralis-latus Zone),
2. - Upper view of EUIC 5863, sample GH 41 (anchoralis-latus Zone).

Figs 3-5 - *Pseudopolygnathus pinnatus* Voges, 1959 Morphotype 2.
3. - Upper view of EUIC 5864, sample HD 35 (typicus Zone),
4. - Upper view of EUIC 5865, sample GH 41 (anchoralis-latus Zone),
5. - Upper view of EUIC 5866, sample HD 37 (anchoralis-latus Zone).

Figs 6-7 - *Pseudopolygnathus oxypageus* Lane, Sandberg & Ziegler, 1980.
6. - Upper view of EUIC 5867, sample HD 35 (typicus Zone),
7. - Upper view of EUIC 5868, sample GH 40 (typicus Zone).

Figs 8-10, 15-16 - *Pseudopolygnathus triangulus triangulus* Voges, 1959.
8. - Upper view of EUIC 5869, sample HD 23 (sandbergi Zone),
9. - Upper view of EUIC 5870, sample HD 32 (isosticha - Upper crenulata Zone),
10. - Upper view of EUIC 5871, sample GH 37 (isosticha - Upper crenulata Zone),
15. - Upper view of EUIC 5872, sample GH 30 (sandbergi Zone),
16. - Upper view of EUIC 5873, sample HD 23 (sandbergi Zone).

Figs 11-12 - *Pseudopolygnathus multistriatus* Mehl & Thomas, 1947.
12. - Upper view of EUIC 5874, sample HD13 (typicus Zone),
13. - Upper view of EUIC 5875, sample GH40 (typicus Zone).

13. - Upper view of EUIC 5876, sample HD23 (sandbergi Zone),
14. - Upper view of EUIC 5877, sample HD23 (sandbergi Zone).

Fig. 17 - *Polygnathus purus purus* Voges, 1959. Upper view of EUIC 5917, sample GH 26 (Lower duplicata Zone).

Figs 18-20 - *Polygnathus communis dentatus* Druce, 1969.
18. - Upper view of EUIC 5881, sample GH 21 (sulcata Zone),
19. - Upper view of EUIC 5918, sample GH 29 (Upper duplicata Zone),
20. - Upper view of EUIC 5884, sample GH 22 (sulcata Zone).

21. - Upper view of EUIC 5853, sample HD 11 (sulcata Zone),
22. - Upper view of EUIC 5919, sample GH 29 (Upper duplicata Zone).

Figs 23-26 - *Polygnathus longiposticus* Branson & Mehl, 1934.
23. - Upper view of EUIC 5860, sample HB 12 (sandbergi Zone),
24. - Upper view of EUIC 5859, sample HD 22 (Upper duplicata Zone),
25. - Upper view of EUIC 5858, sample GH 29 (Upper duplicata Zone),
26. - Upper view of EUIC 5857, sample GH 26 (Lower duplicata Zone).

Figs 27-28 - *Polygnathus inornatus inornatus* Branson, 1934.
27. - Upper view of EUIC 5882, sample GH 22 (sulcata Zone),
28. - Upper view of EUIC 5883, sample HD 17 (Lower duplicata Zone).

Fig. 29 - *Polygnathus flabellus* Branson & Mehl, 1938. Upper view of EUIC 5920, sample GH 23 (Lower duplicata Zone).
DISCUSSION AND CONCLUSIONS

The study of the Ghale-kalaghu, Howz-e-Dorah 1 and Howz-e-Dorah 2 sections documents relatively continuous sedimentation from the Late Devonian (Uppermost marginifera Zone) to the Early Carboniferous (anchoralis-latus Zone) in the southern Shotori range, with a gap limited to the upper part of the praesulcata Zone, and maybe the lower part of the sulcata Zone, much shorter than that claimed by other authors in the same area or even in the same sections between the Cephalopod bed and the Mush Horizon: the top of the Cephalopod bed belongs to the praesulcata Zone and the Mush Horizon starts within the sulcata Zone. Yazdi (1999) proposed a gap from the Lower expansa to the Lower crenulata, Wendt et al. (2005, p. 54) “from the uppermost Famennian to Lower Tournaisian”, and Ashouri (1995, 1997b) from the latest Famennian (Middle expansa - Lower praesulcata zones)

EXPLANATION OF PLATE 4

Figs 1-5 - Gnathodus pseudosemiglaber Thomson & Fellows, 1970.
1 - Upper view of EUIC 5884, sample HD 37 (anchoralis-latus Zone),
2 - Upper view of EUIC 5885, sample HD 38 (anchoralis-latus Zone),
3 - Upper view of EUIC 5886, sample GH 42 (anchoralis-latus Zone),
4 - Upper view of EUIC 5887, sample GH 41 (anchoralis-latus Zone),
5 - Upper view of EUIC 5888, sample GH 43 (anchoralis-latus Zone).

Figs 6-9 - Gnathodus semiglaber Bischoff, 1957.
6 - Upper view of EUIC 5889, sample GH 40 (typicus Zone),
7 - Upper view of EUIC 5890, sample GH 42 (anchoralis-latus Zone),
8 - Upper view of EUIC 5891, sample HD 38 (anchoralis-latus Zone),
9 - Upper view of EUIC 5892, sample HD 35 (typicus Zone).

Figs 10-13 - Gnathodus typicus Cooper, 1939.
10 - Upper view of EUIC 5897, sample HD 35 (typicus Zone),
11 - Upper view of EUIC 5898, sample HD 35 (typicus Zone),
12 - Upper view of EUIC 5900, sample GH 40 (typicus Zone),
13 - Upper view of EUIC 5899, sample GH 40 (typicus Zone).

14 - Upper view of EUIC 5901, sample HD 11 (sulcata Zone),
15 - Upper view of EUIC 5902, sample GH 20 (sulcata Zone).

Figs 16-17 - Protagnathodus collinsoni Ziegler, 1969.
16 - Upper view of EUIC 5903, sample HB 9 (sulcata Zone),
17 - Upper view of EUIC 5904, sample GH 20 (sulcata Zone).

Figs 18-21 - Gnathodus cuneiformis Mehl & Thomas, 1947.
18 - Upper view of EUIC 5893, sample HD 35 (typicus Zone),
19 - Upper view of EUIC 5894, sample GH 40 (typicus Zone),
20 - Upper view of EUIC 5895, sample GH 42 (anchoralis-latus Zone),
21 - Upper view of EUIC 5896, sample GH 42 (anchoralis-latus Zone).

Figs 22-24 - Gnathodus delicatus Branson & Mehl, 1938.
22 - Upper view of EUIC 5905, sample GH37 (isosticha - Upper crenulata Zone),
23 - Upper view of EUIC 5906, sample HD33 (isosticha - Upper crenulata Zone),
24 - Upper view of EUIC 5907, sample GH40 (typicus Zone).

Figs 25-26 - Gnathodus punctatus (Cooper, 1939).
25 - Upper view of EUIC 5909, sample GH 38 (isosticha - Upper crenulata Zone),
26 - Upper view of EUIC 5910, sample GH 38 (isosticha - Upper crenulata Zone).

Figs 27, 28 - Clydagnathus cavusformis Rhodes, Austin & Druce, 1969.
27 - Upper view of EUIC 5915, sample HD 14 (Lower duplicata Zone),
28 - Upper view of EUIC 5661, sample HB 9 (Lower duplicata Zone).

Fig. 29 - Polynathus longiposticus Branson & Mehl, 1934. Upper view of EUIC 5913, sample HD 17 (Lower duplicata Zone).

Figs 30-31 - Polynathus parapetus Druce, 1969.
30 - Upper view of EUIC 5911, sample HD 15 (Lower duplicata Zone),
31 - Upper view of EUIC 5912, sample GH 30 (sandbergi Zone).

Fig. 32 - Elictognatus laceratus Branson & Mehl, 1934. Lateral view of EUIC 5914, sample GH32 (Lower crenulata Zone).
Fig. 33 - Doliognathus latus Branson & Mehl, 1941 Morphotype 2. Upper view of EUIC 5908, sample HD38 (anchoralis-latus Zone).
Fig. 34 - Dollymae boukaerti Groessens, 1971. Upper view of EUIC 5916, sample GH43 (anchoralis-latus Zone).
to the Tournaisian (anchoralis-latus Zone) in various sections. We believe that such incertitude was due to the poorness of the conodont fauna in the lower part of the Mush Horizon and/or the distance between samples.

ACKNOWLEDGEMENTS

This study is part of Ali Bahrami’s PhD project at the Isfahan University (Iran) supported by the Office of Graduate Studies; the authors are grateful to the office for its support. The conodont study was completed during a six months research and study period at the Dipartimento di Scienze della Terra, Università di Cagliari (Italy). Thanks are due to Jeff Over, Iliana Boncheva, John A. Talent and Andrey Zhuravlev for giving support and providing copies of literature. Hossein Gholamalian, Mr. Ghaedi and Saltdari helped in field work, sampling and acid leaching. Mr. Esmailzadeh and his family kindly hosted during field work in the Tabas area. We are deeply grateful to Jeff Over and Claudia Spalletta for critical revision of the manuscript.

This paper is a contribution to IGCP 596 - Climate change and biodiversity patterns in the Mid-Paleozoic (Early Devonian to Late Carboniferous).

REFERENCES

Ashouri A.R. (1997b). Revision in stratigraphical position of the “Cephalopod Beds” and Devonian- Carboniferous boundary and introducing 5 conodont zones in Howz-e-Dorah (East Iran).

