The conodont genus *Pseudooneotodus* Drygant from the Silurian and Lower Devonian of Sardinia and the Carnic Alps (Italy)

Carlo Corradini

C. Corradini, Dipartimento di Scienze della Terra, Università di Cagliari, via Trentino 51, I-09127 Cagliari (Italy); corradin@unica.it

KEY-WORDS - Pseudooneotodus, Conodonts, Taxonomy, Silurian, Lower Devonian, Sardinia, Carnic Alps.

ABSTRACT – More than one thousand and five hundreds specimens belonging to the squat coniform conodont Genus *Pseudooneotodus* from Sardinia and the Carnic Alps has been studied. All the specimens have one or two apical tips. On the basis of the unrelated distribution of the different morphologies the apparatus is reconstructed as unimembrate, and three species have been discriminated: *Ps. beckmanni*, *Ps. bicornis* and *Ps. linguicornis*. Morphological differences in the apical part of *Ps. bicornis* allow to distinguish the new subspecies *Ps. bicornis contiguus*, which evolved from the nominal species during the Ludfordian.

INTRODUCTION

Pseudooneotodus Drygant is a conodont genus widely distributed from the Middle Ordovician to the Lower Devonian all over the world. The elements of the genus are short and conical, with similarities only with the Ordovician genus *Oneotodus* Lindström. Because of this peculiar shape, for a long time *Pseudooneotodus* was considered to be not a conodont, and different hypotheses were stressed out by several authors: Möstler (1968) referred to skeletal elements of the genus as “pseudoconodonts”. Serpagli (1970) considered them as problematica, Flügel & Schönlau (1972) regarded them as fish teeth, and Winder (1976) discussed possible similarities with gastropods and bryozoans. Nevertheless, other authors recognised morphological similarities to conodonts: Jentzsch (1962), overlapping growth lamellae in basal cavity, and Schulze (1968), basal filling like that of true conodonts. Finally, Drygant (1974) considered them as conodonts, and Barrick (1977) confirmed this on the basis of “the same colour, luster and type of the basal material as found in undoubted conodonts from the same residues” (p.57). Recently Sansom (1996) did an histological study on *Pseudooneotodus*, confirming the attribution to conodonts, and stressing conclusions on stratigraphic first appearances of vertebrate hard tissues.

STUDIED MATERIAL

The studied collection includes specimens from several sections and outcrops of Silurian and Early Devonian age from Sardinia and from the Italian side of the Carnic Alps (Fig. 1). During Lower Palaeozoic time these regions represented two terranes in the Northern Gondwana margin. For geological settings refer to Ferretti & Serpagli (1996), Ferretti et al. (1998a) and Corradini et al. (1998a, 2002) for Sardinia, and to Histon & Schönlau (1999) and Schönlau & Histon (2000) for the Carnic Alps.

The biozonation schemes followed in this paper are those proposed by Corradini & Serpagli (1999) for the Silurian, and by Carsls & Weddige (1996) for the Lower Devonian. For a correct interpretation of Pfidoli data, it should be remarked that the *detortus* Zone is chronostratigraphically longer in Sardinia than elsewhere (Gouwy & Corradini, 2006); therefore in this paper have been distinguished a lower part, below the first occurrence of *Oz. eosteinhornensis* s.s., and an upper part of the zone.

The studied *Pseudooneotodus* collection includes more than 1500 short squat conical elements with one or two apical tips (Tab. 1). The claimed occurrence of *Ps. tricornis* in Sardinia from an unusually very high stratigraphic level (Olivieri & Serpagli, 1990, tab. 1) cannot be confirmed, since the specimen is not a conodont element...

The occurrence of *Pseudooneotodus* is very irregular: in some levels representatives of the genus are very abundant, while in others they are not present. This fact has been also observed in stratigraphically very close samples (i.e.: successive beds in the same section) for both the occurring taxa, and suggests a possible ecological control on the distribution of *Pseudooneotodus*, which may have been more affected by environmental variations than coeval conodont taxa.

Ps. beckmanni is very rare up to the Ludfordian, and from then on always almost present, with two acme during the Lochkovian and the Pragian. *Ps. bicornis* is very
abundant in the Homerian, almost missing in the Gorsstian, then present in Ludlow and Pridoli where it is represented by two different morphologies. Based on the distance between the tips these morphologies are here regarded as two separate subspecies. A single specimen of Ps. linguicornis has been found in the Homerian.

SYSTEMATIC PALAEONTOLOGY

The studied material is stored in the Earth Science Department of the University of Cagliari and in the Department of the Palaeobiology Museum and Botanical Garden of the University of Modena and Reggio Emilia. Figured specimens are housed in the Palaeontological Museum of the University of Modena and Reggio Emilia (IPUM); horizons and catalogue numbers are given in the figure captions.

Genus *Pseudooneotodus* Drygant, 1974

Type species - *Oneotodus? beckmanni* Bischoff & Sannemann, 1958, p. 98.

Diagnosis - Refer to Bischoff (1986).

Remarks - Drygant (1974), working on the Silurian of Volyno-Podolia, introduced the genus name *Pseudooneotodus* and described three kinds of squat conical elements, placing them into three species according to the number of apical tips: *Ps. beckmanni* (Bischoff & Sannemann) - one tip, *Ps. bicorns* Drygant - two tips, and *Ps. tricornis* Drygant - three tips.

Bischoff (1986) stated that in case of the multiple tipped taxa, the number of denticles is a sufficiently diagnostic character, whilst the classification of one tipped elements presents some problems in view of the fact that the type species *Ps. beckmanni* (Bischoff & Sannemann) displays a certain range of morphological variability, but in the specimens from the type area “the outline of the baseline is always subtriangular, although dimensions of the sides and the angles between them may change. Elliptical, circular, subquadrate, and subrectangular outlines do not occur and are therefore regarded to be outside the range of intraspecific variations” (Bischoff, 1986, p.233). On the basis of these considerations, the author introduced two new taxa from lower Silurian of Australia, *Ps. panuarensis* Bischoff, very close to *Ps. beckmanni*, and *Ps. boreensis* Bischoff, that is definitely a different species. Jeppsson in Calner & Jeppsson, 2003) described *Ps. linguicornis* Jeppsson, a species with strongly compressed oval basal outline and a tongue-like compressed tip from a very narrow stratigraphic interval in the Sheinwoodian.

Apart from the Silurian, *Pseudooneotodus* is also known from the Middle and Upper Ordovician and the Lower Devonian. In the upper Ordovician, a few one-tipped species have been discriminated: *Ps. mitratus* (Moskalenko), *Ps. mitrectus* (Moskalenko), *Ps. nostras* (Moskalenko), *Ps. humilis* Orchard, and *Ps. cf beckmanni*; in the Lower Devonian only *Ps. beckmanni* is known.

Barrick (1977) reconstructed the apparatus of *Ps.
bicorns Drygant and of Ps. tricornis Drygant, as built by three different elements: a two-tipped or a three tipped squat element, combined in both taxa with the same one-tipped squat element and a slender conical element. The author argued also that the apparatus of Ps. beckmanni could have comprised a one-denticle squat element and slender conical elements. Armstrong (1990) confirmed Barrick’s reconstructions. However,

<table>
<thead>
<tr>
<th>BIOZONE</th>
<th>Lagosta</th>
<th>Malga</th>
<th>Ceprano</th>
<th>Barcis</th>
<th>Ortisei</th>
<th>Canazei</th>
<th>Cortina</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE</td>
<td>BIODEF 6</td>
<td>CLV 3</td>
<td>CLV 4</td>
<td>CP 6</td>
<td>MC 11</td>
<td>MC 11</td>
<td>MC 12</td>
</tr>
<tr>
<td>Ps.beckmanni</td>
<td>1 1 1</td>
</tr>
<tr>
<td>Ps.b. bicorns</td>
<td>1 1 1</td>
</tr>
<tr>
<td>Ps.b. contigua</td>
<td>1 1 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIOZONE</th>
<th>Lagosta</th>
<th>Malga</th>
<th>Ceprano</th>
<th>Barcis</th>
<th>Ortisei</th>
<th>Canazei</th>
<th>Cortina</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE</td>
<td>GALE 1</td>
<td>GALE 4</td>
<td>GALE 6</td>
<td>GALE 7</td>
<td>GALE 9</td>
<td>GALE 11</td>
<td>GALE 13</td>
</tr>
<tr>
<td>Ps.beckmanni</td>
<td>2 1 1 2</td>
</tr>
<tr>
<td>Ps.b. bicorns</td>
<td>2 1 1 2</td>
</tr>
<tr>
<td>Ps.b. contigua</td>
<td>2 1 1 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIOZONE</th>
<th>Lagosta</th>
<th>Malga</th>
<th>Ceprano</th>
<th>Barcis</th>
<th>Ortisei</th>
<th>Canazei</th>
<th>Cortina</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE</td>
<td>MP 6</td>
<td>MP 9</td>
<td>MP 14</td>
<td>MP 16</td>
<td>MP 25</td>
<td>MP 25</td>
<td>MP 25</td>
</tr>
<tr>
<td>Ps.beckmanni</td>
<td>2 1 1 2</td>
</tr>
<tr>
<td>Ps.b. bicorns</td>
<td>2 1 1 2</td>
</tr>
<tr>
<td>Ps.b. contigua</td>
<td>2 1 1 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIOZONE</th>
<th>Lagosta</th>
<th>Malga</th>
<th>Ceprano</th>
<th>Barcis</th>
<th>Ortisei</th>
<th>Canazei</th>
<th>Cortina</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE</td>
<td>SIL 17</td>
<td>SIL 11</td>
<td>SIL 12</td>
<td>SIL 14</td>
<td>SIL 15</td>
<td>SIL 15</td>
<td>SIL 15</td>
</tr>
<tr>
<td>Ps.beckmanni</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>Ps.b. bicorns</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>Ps.b. contigua</td>
<td>1 1 1 1 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIOZONE</th>
<th>Lagosta</th>
<th>Malga</th>
<th>Ceprano</th>
<th>Barcis</th>
<th>Ortisei</th>
<th>Canazei</th>
<th>Cortina</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE</td>
<td>SIL 17</td>
<td>SIL 11</td>
<td>SIL 12</td>
<td>SIL 14</td>
<td>SIL 15</td>
<td>SIL 15</td>
<td>SIL 15</td>
</tr>
<tr>
<td>Ps.beckmanni</td>
<td>37 1 1 1 1</td>
<td>5 2 2 4</td>
<td>16 1 9 33</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Ps.b. bicorns</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>Ps.b. contigua</td>
<td>1 1 1 1 1</td>
</tr>
</tbody>
</table>

Tab. 1 – Occurrence of Pseudoconeotodus in the Carnic Alps (top row) and in Sardinia. For locality abbreviations see the caption of Fig. 1.
other authors (i.e. Bischoff, 1986; Jeppsson, 1997) disregard this recon-struction, because in their collections geographical and stratigraphical distribution of the three members are not concurrent; this fact supports an unimembrate apparatus. Another question is if the apparatus included several elements, so similar that we have not yet detected any character to distinguish them.

Material from Sardinia and the Carnic Alps supports an unimembrate reconstruction of the apparatus, since the occurrence of the different elements in samples (Tab. 1) and stratigraphical levels (Fig. 2) is not concurrent. In fact, the two tipped *Ps. bicornis* is abundant in upper Llandovery and Wenlock, when the one tipped form is very rare, and re-appears in the upper Ludlow, where forms with very close two tips become more abundant. *Ps. beckmanni* is rare below the Ludfordian, then always present up to the Lower Devonian, when it has an acme in the Pragian. Furthermore, in the studied material the conical slender element claimed to be part of the apparatus has never been recovered together with the squat elements: the single specimen found come from sample MC I 2 (*variabilis* Zone, Carnic Alps), where *Pseudooneotodus* is not present.

The suprageneric classification of *Pseudooneotodus* is still an open question: Sweet (1988) assigned the genus to the order Protopanderodontida Sweet, Dzik (1991) placed it within the order Panderodontida Dzik, whilst Aldridge & Smith (1993) consider *Pseudooneotodus* to be member of a new family belonging to an unknown order.

Range of the genus - From Darriwillian (Middle Ordovician, *Histiodella holodentata* Zone; Stouge, 1984) to Emsian (Lower Devonian; Schulze, 1968). In the studied material, seven specimens of *Ps. beckmanni* come from a sample (SL B) dated as the *serotinus* Zone (upper Emsian; Barca et al., 1986).

Table

| Biozones | amorphognathoides | ranuliformis | renatana | sagita | bohemica | crassa | variabilis | hamata | plocenkasia | sillicius | latiata | crispa | remschleideni | densus | woschmidtia | eureksia | delia | pelas | salicius | kindlei | pireneae | kloubiacus | excavaotus | nosthoponous | inversus | serotinus |
|----------------|------------------|------------|----------|--------|----------|--------|------------|--------|-------------|-----------|---------|-------|--------------|--------|-------------|----------|------|------|----------|--------|----------|-----------|----------|-----------|---------|

Fig. 2 – Distribution and relative abundance of the *Pseudooneotodus* taxa in the Silurian and Lower Devonian of Italy, plotted against the conodont zonation. The thickness of the line approximately indicates abundance. Abbreviations: Sheinw.: Sheinwoodian; H.: Homerian.
1974 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Drygant, p. 67, pl. 2, figs 34-39.
1977 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Cooper, p. 1068, pl. 2, figs 14, 17.
1977 Pseudooneotodus bicornis Drygant - Barrick, pl. 2, fig. 19 (only).
1979 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Lane & Ormiston, pl. 1, fig. 31.
1980 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Mc Cracken & Barnes, p. 23, pl. 2, figs 30-31.
1980 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Drygant, pl. 1, figs 3-7.
1985 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Mastandrea, pl. 1, fig. 10.
1985 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Wang, pl. 2, fig. 19.
1986 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Bischoff, pl. 27, figs 3-8.
1986 Pseudooneotodus panuarensis Bischoff, pl. 27, figs 9-12.
1986 Pseudooneotodus beckmanni - A Bischoff, p. 240, pl. 28, figs 1-3.
1986 Pseudooneotodus sp. b Bischoff, p. 241, pl. 27, figs 38-39.
1986 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Wang, pl. 2, fig. 5-6.
1987 Pseudooneotodus bicornis Drygant - Kleffner, fig. 5.14 (only).
1987 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Over & Chatterton, pl. 6, figs 25.
1988 Pseudooneotodus beckmanni Drygant - Armstrong, pl. 18, figs 11-12 (only).
1990 Pseudooneotodus tricornis Drygant - Armstrong, pl. 18, fig. 17 (only).
1991 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Barca & Oliveri, pl. 3, fig. 14.
1994 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Mason & Talent, fig. 15-I-L.
1995 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Furey-Greig, pl. 1, fig. 3 T.
1996 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Sassi, fig. 11-m.
1996 Pseudooneotodus bicornis Drygant - Sansom, fig. 1g.k
1998 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Serpagli et al., pl.1.2.1, fig. 14 (non pl. 1.2.2, fig. 3 = Ps. bicornis contiguus).
1998 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Corradini et al., pl. 3.3.1, fig. 16.
1998 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Mannis & Malkovski, pl. 1, fig. 26.
1998 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Kozur, pl. 1, fig. 3.
1999 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Talent & Mason, pl. 13, figs 1-7.
2000a Pseudooneotodus beckmanni (Bischoff & Sannemann) - Cockle, p.119, pl. 1, figs 1-2.
2000a Pseudooneotodus n.sp. Goncioglu & Kozur, fig. 5.2.
2000a Pseudooneotodus beckmanni (Bischoff & Sannemann) - Goncioglu & Kozur, fig. 5.3, 5.5, 5.6, 5.7, 6.9, 6.10, 7.2.
2000b Pseudooneotodus beckmanni (Bischoff & Sannemann) - Goncioglu & Kozur, fig. 5.2, 5.5.
2001 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Corradini et al., pl. 1, figs 8.
2001 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Corradini et al., pl. 1, figs 1-6.
2003 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Peters & Barnes, figs 17.24, 17.25.
2003 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Corradini et al., pl. 1, figs 8.
2004 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Farrell, p.956, pl. 2, figs 15-17.
2005 Pseudooneotodus bicornis Drygant - Metzger, pl. 1, fig. 4 (only).
2006 Pseudooneotodus beckmanni (Bischoff & Sannemann) - Albanesi et al., figs 5.K, 5.L.

Description - Short squat conical element with a single apical denticle, normally posteriorly reclined. The outline of the base is ovoidal to subtriangular, more rarely subrectangular. The deep basal cavity occupies the complete lower part of the element.

Remarks - Representatives of the species show a huge variability both in the width/height ratio and in the outline of the base, which can be more or less circular, elliptical, subtriangular, subquadrate, and subrectangular. Bischoff (1986) reports that the specimens from the type area always have a subtriangular outline of the basal margin, and suggests that only specimens with such feature belong to this species, whereas the others should be placed into different taxa. Therefore, he proposed the name Ps. panuarensis to specimens with an elongated subtriangular base outline and all the other features very close to Ps. beckmanni. The author left two more taxa, with a subcircular and an elongate basal outline respectively in open nomenclature: these forms are here synonymised with Ps. beckmanni.

Some authors, accepting the Barrick (1977) apparatus reconstruction, illustrated as Ps. bicornis specimens actually belonging to Ps. beckmanni (see synonymy list for details). Degardin (1988) described and illustrated in open nomenclature a specimen easily referable to the present species; Goncicioglu & Kozur (2000a, fig. 5.2) illustrated as Pseudooneotodus n.sp. a specimens with a laterally elongated outline of the base: however it looks that their specimen is broken posterior close to the base, and that the basal outline was probably subtriangular, therefore fitting on the diagnosis of Ps. beckmanni.

In the studied material the outline of the base is more frequently elliptical or subtriangular, rarely circular and rectangular; all the intermediate forms have been observed, too. Furthermore, specimens with different basal outlines co-occur in the same sample, and no relationship between basal outline and stratigraphic levels occur. Therefore, it looks to be impossible to split the studied material in several taxa and all the species have been referred to as Ps. beckmanni.

Range - From Upper Ordovician to Lower Devonian (serotinus Zone, Emisian).

Studied material - 848 specimens.

Pseudooneotodus bicornis (Drygant, 1974)

Diagnosis - (after Bischoff, 1986, slightly modified) - Unimembrate apparatus composed of squa conical elements with subtriangular to elliptical basal margin outline and with two apical tips.

Remarks - In the studied collections two well distinct morphologies are present, based on the distance between the apical tips. These two forms are proposed here as different subspecies: Ps. bicornis contiguus, with the tips very close to each other, is discriminated from Ps. b. bicornis, representing the “classical” form with discrete apical tips.
Pseudooneotodus bicornis (Drygant, 1974) (Pl.1, Figs. 8-17)

1974 Pseudooneotodus bicornis n. sp. DRYGANT, p. 67, pl. 2, figs 40-48.
1976 Pseudooneotodus bicornis Drygant - BARRICK & KLAPPER, p. 81, pl. 1, fig. 15.
1977 Pseudooneotodus bicornis Drygant - COOPER, p. 1069, pl. 2, fig. 9, 11 (non fig. 8 = Ps. b. contiguus).
1984 Pseudooneotodus bicornis Drygant - DRYGANT, p. 63, pl. 1, figs 8-11.
1985 Pseudooneotodus bicornis Drygant - MARILLARD & ALDRIDGE, fig. 7e.
1986 Pseudooneotodus bicornis Drygant - BISCHOFF, p. 234, pl. 27, figs 18-19, 21-27.
1987 Pseudooneotodus bicornis Drygant - KLEFFNER, fig. 5.16 (non 5.14).
1987 Pseudooneotodus bicornis Drygant - OVER & CHATTERTON, pl. 6, fig. 23 (only).
1990 Pseudooneotodus bicornis Drygant - ARMSTRONG, p. 114, pl. 18, figs 13-15 (non 10-12).
1990 Pseudooneotodus bicornis Drygant - KLEFFNER, fig. 3.24.
1995 Pseudooneotodus bicornis Drygant - BARCA et al., pl. 4, fig. 14.
1996 Pseudooneotodus bicornis Drygant - SANSOM, fig. li-j (only).
1998a Pseudooneotodus bicornis Drygant - CORRADINI et al., pl. 1.3.1, fig. 13.
1998 Pseudooneotodus bicornis Drygant - FERRETTI et al., pl. 2.2.1, fig. 10; pl. 2.2.2, fig. 13.
1998b Pseudooneotodus bicornis Drygant - CORRADINI et al., pl. 3.3.1, fig. 3.
1998 Pseudooneotodus bicornis Drygant - MANNIK & MAŁKOWSKI, pl. 1, fig. 2.
1999 Pseudooneotodus bicornis Drygant - COCKLE, p. 119, pl. 1, figs 3-4.
2001 Pseudooneotodus bicornis Drygant - CORRADINI, p. 25, pl. 1, figs 7-13 (non figs 14-17 = Ps. b. contiguus).
2003 Pseudooneotodus bicornis Drygant - CALNER & JEPPSSON, p. 67, fig. 15m-q.
2005 Pseudooneotodus bicornis Drygant - METZGER, pl. 1, fig. 2-3 (non fig. 4).

Description - Squat conical conodont element bearing two discrete tips in the apical part. The outline of the base is subtriangular to elliptical. In upper view, the tips of the apical part are located close to the anterior margin, therefore this part of the element is steeper than the posterior one. The apical tips may be separated, or connected by a ridge. The basal cavity is deep.

Remarks - The outline of the base is more frequently subtriangular or elliptical, but in a few specimens it is almost subcircular. A great variability in the apical part has been observed: in fact, the two tips are always well distinct, but they can be separated by a deep depression (Pl.1, figs. 8-10), or connected by a ridge; this ridge can be straight (Pl.1, figs. 13, 16), slightly (Pl.1, fig. 12), or strongly (Pl.1, fig. 17), curved, with the concavity facing the posterior side of the element. These apical features are present in specimens from all stratigraphic levels

EXPLANATION OF PLATE 1

figs. 1-7 - Pseudooneotodus beckmanni (Bischoff & Sannemann).
1 - Lateral (a) and upper (b) views of specimen IPUM 27678; sample MC II 1, Oz. crispa Zone.
2 - Upper view of specimen IPUM 27971; sample GA 4A, Pol. siluricus Zone.
3 - Lateral view of specimen IPUM 25868; sample SIL I° 7, Pol. siluricus Zone.
4 - Lower view of specimen IPUM 225870; sample ARG A, Z. remscheidensis Zone.
5 - Lateral view of specimen IPUM 27972; sample NSF 1, Z. remscheidensis Zone.
6 - Upper view of specimen IPUM 27973; sample MC II 6, I. w. woschmidti Zone.
7 - Upper view of specimen IPUM 27974; sample NSF 4, Oul. el. detortus Zone.

figs. 8-17 - Pseudooneotodus bicornis bicornis Drygant.
8 - Upper view of specimen IPUM 27976; sample SF 12, Oz. sagitta Zone.
9 - Lateral view of specimen IPUM 25867; sample GCIU 9, Oz. snajdrii Zone.
10 - Upper view of specimen IPUM 27977; sample GA 7, Oul. el. detortus Zone.
11 - Lateral view of specimen IPUM 25865; sample PF 6, Oz. s. sagitta Zone.
12 - Upper view of specimen IPUM 25864; sample ARG 01, Oz. s. sagitta Zone.
13 - Lateral view of specimen IPUM 25866; sample PF 1, Oz. s. sagitta Zone.
14 - Upper view of specimen IPUM 27978; sample SIL I° 22, Oz. snajdrii Zone.
15 - Lateral view of specimen IPUM 27979; sample SAD BK 3, Pt. amorphognathoides Zone.
16 - Upper (a) and upper-lateral (b) views of specimen IPUM 27980; sample SF BK 11, Oz. s. sagitta Zone.
17 - Upper view of specimen IPUM 27979; sample SIL I° 23, Oz. crispa Zone.

figs. 18-23 - Pseudooneotodus contiguus n. sp.
18 - Upper-lateral view of specimen IPUM 27985; sample SAD I° 26, Z. remscheidensis Zone.
19 - Upper (a) and upper-lateral (b) views of the Holotype, IPUM 25869; sample SIL I° 23, Oz. crispa Zone.
20 - Upper-lateral view of specimen IPUM 27983; sample SIL I° 23, Oz. crispa Zone.
21 - Lateral view of specimen IPUM 27981; sample SIL I° 22, Oz. snajdrii Zone.
22 - Upper view of specimen IPUM 27982; sample GCIU 29, Oz. crispa Zone.
23 - Lateral view of specimen IPUM 27984; sample SIL I° 23, Oz. crispa Zone.

figs. 24 - Pseudooneotodus linguicornis Jeppsson.
24 - Posterior (a), upper (b) and lateral (c) views of specimen IPUM 27986; sample SF 11, Oz. sagitta Zone.

All specimens x 100.
from which the taxon has been collected, therefore it cannot be interpreted as an evolutionary character, and its meaning is still unclear.

For discussion of differences with Ps. b. contiguus n.sp. see the latter subspecies.

In the studied collections, Ps. b. bicornis is abundant in the Wenlock, with an acme in the Oz. s. sagitta Zone; after that it is almost absent, and then reappear in the Ludfordian, slightly before the first occurrence of Ps. bicornis contiguus. The last record of Ps. b. bicornis is in the lower part of the Oul. el. detortus Zone.

Range - The species is known from the base of Wenlock (Pt. amorphognathoides Zone) to Pridoli (lower part of the Oul. el. detortus Zone).

Studied material - 551 specimens.

Pseudooneotodus bicornis contiguus n. ssp.

(Pl.1, Figs. 18-23)

1977 Pseudooneotodus bicornis Drygant - COOPER, pl. 2, fig. 8 (only)
1998 Pseudooneotodus beckmanni (Bischoff & Sannemann) - SERPACI et al., pl. 1.2.2, fig. 3 (only).
2001 Pseudooneotodus bicornis Drygant - CORRADINI, pl. 1, figs 14-17 (only).

Holotype - the specimen IPUM 25869, illustrated on Pl.1, fig. 19.

Locus typicus - Silius I Section, near the Silius village, SE Sardinia.

Stratum typicum - SIL I 23 (Oz. crispa Zone).

Derivatio nominis - from Latin contiguus = closely spaced.

Diagnosis - A subspecies of Ps. bicornis with the two tips very close each other.

Description - Squat conical conodont elements with two tips very close to each other in the apical part. The outline of the base is subtriangular to elliptical. The tips of the apical part are located closer to the anterior margin than to the posterior one, therefore this side of the element is much more steep than the posterior one. The basal cavity is very deep and occupies the complete lower part of the element.

Remarks - Ps. bicornis contiguus differs from the nominal species by having the two apical tips placed very close. In some specimens the tips are so close that they look similar to Ps. beckmanni, which has one single tip; however, a narrow trough in the upper part of the posterior side of the element allows to distinguish the two taxa.

Cooper (1977) and Jeppsson (1997) record the recovery of specimens of Ps. bicornis with very close apical tips. However, even if these authors do not indicate precisely the stratigraphic levels where their specimens have been recovered, their papers deal on Wenlock, therefore it is highly probable that this taxon appear somewhere in lower Silurian.

In the studied material the First Occurrence of Ps. bicornis contiguus is in the upper part of the siluricus Zone, but the taxon is quite rare compared to Ps. b. bicornis. In the uppermost Ludlow (snajdri and crispa zones) it represents about one third of the collection of this Genus, while it is dominant during the Pridoli (Fig. 3).

Range - In the studied material Ps. bicornis contiguus occur from the upper part of the P. siluricus Zone to the upper part of the Oul. el. detortus Zone. An older occurrence can not be excluded.

Studied material - 164 specimens.

Pseudooneotodus linguicornis Jeppsson, 2003

(Pl.1, Figs. 24)

1998 Pseudooneotodus sp. n. L, MÄNNIK & MALIKOVSKI, pl. 1, fig. 8.
2003 Pseudooneotodus linguicornis JEPSSON (in CALNER & JEPSSON), p. 194-196, fig. 15a-15l.

Remarks - Ps. linguicornis is characterized by a more or less elliptical cross section and a flattened posterior side. The apical tip is rounded and slightly recurved. The only specimen found fit well in the diagnosis and description of this species provided by Jeppsson (in Calner & Jeppsson, 2003).

Range - The species is known only from the Oz. s. sagitta Zone.

Studied material - 1 specimen.

CONCLUSIONS

The main results of this research are:

- the apparatus of Pseudooneotodus is reconstructed as unimembrate, on the basis of the unrelated distribution
of the different morphologies;
- three species (Ps. beckmanni, Ps. bicorinid and Ps. lingucorinides) have been discussed and illustrated;
- the new subspecies Ps. bicorinid contiguus have been proposed: it is discriminated from the nominal species on the basis of morphological differences in the apical part.

ACKNOWLEDGEMENTS

Prof. Enrico Serpagli (Modena) provided useful comments on an earlier version of the manuscript. Dr. Angelo Ibba (Cagliari) and Dr. Lorenzo Ceroni (Modena) helped taking SEM photographs. Dr. Sofie Gouwy improved the English language of the text. The manuscript benefited by critical reviews from Lemnart Jeppsson (Lund) and Peep Männik (Tallinn).

This paper is a contribution to IGCP Project n.499 “Devonian sea-lan interactions: evolution of ecosystem and climate”.

REFERENCES

Jentsch I. (1962). Conodonten aus Tentaculitenkollennalk
Hemian (Early Silurian) Standard Conodont
Zonation. Transactions of the Royal Society of Edinburgh: Earth
Sciences, 88: 91-114.
Formation (Silurian, Southern Ohio): Biostratigraphy and
Kleffner M.A. (1990). Wenlockian (Silurian) conodont
biostratigraphy, depositional environments, and depositional
history along the eastern flank of the Cincinnati Arch in Southern
Formation”) of the western Karaburun peninsula, western
Turkey. In Szaniawski H. (Ed.), Proceedings of the Sixth
European Conodont Symposium (ECOS VI). Paleontologia
Polonica, 58: 171-189.
of the Salmontrout River area, east-central Alaska. Geologica et
the base of Wenlock series in the type area. Paleontology, 28
(1): 89-100.
Golpad core, Poland. In Szaniawski H. (Ed.), Proceedings of the
Sixth European Conodont Symposium (ECOS VI). Paleontologia
Polonica, 58: 141-151.
Mastandrea A. (1985). Early Devonian (Lochkovian) conodonts from
southwestern Sardinia. Bollettino della Società Paleontologica
fan and isolated limestone clasts and megaclasts, East-Central
Victoria. Proceedings of the Royal Society of Victoria, 106: 31-
70.
and paleoecology of the Ellis Bay Formation, Anticosti Island,
Quebec, with special reference of the Late Ordovician-Early
Silurian chronostratigraphy and the system boundary. Bulletin
Groove and Laporte City Formations (Late Llandovery-Early
Wenlock; Silurian) in Eastern Iowa. In Barrick, J.E. & Lane,
H.R. (Eds), A standing ovation: Papers in Honor of Gilbert
Möstl H. (1968). Das Silur im Westabschnitt der Nördlichen
Grauwackenzone (Tirol und Salzburg). Mitteilungen der
Gesellschaft der Geologie und Bergbaustudenten in Wien, 18:
89-150.
conodonts from Mussolino Formation near Fluminimaggiore,
Southwestern Sardinia. Bollettino della Società Paleontologica
Italiana, 29 (1): 59-76.
conodonts from the southern Mackenzie Mountains, Northwest Territories,
Philip G.M. (1965). Lower Devonian conodonts from the Tyers area,
Gippsland, Victoria. Proceedings of the Royal Society of
basin transect, Lower Ordovician to lower Silurian, Northeastern British Columbia, Canada. Journal of
Paleontology, 77: 146-171.
Ordovician to Devonian vertebrate phylum. Zoological Journal
of the Linnean Society, 118: 47-57.
Southern Alps. Mitteilungen der Österreichischen
Schulze R. (1968). Die Conodonten aus dem paläozoikum der
mittleren Karawanken Seeberggebiet. Neues Jahrbuch für
Geologie und Paläontologie Abhandlungen, 130: 133-245.
(Silurian) Conodonts from Western Sardinia. Bollettino della
Ludlow-Přídlví section near the Silius Village. In Serpagli E.
(Ed.), Sardinia Guide-book, ECOS VII. Giornale di Geologia,
60, Spec. Issue: 104-111.
Stouge S.S. (1984). Conodonts of the Middle Ordovician Table Head
Formation, western Newfoundland. Fossil and Strata, 16: 1-
145.
Sweet W.C. (1988). The Conodonta: morphology, taxonomy,
paleoecology, and evolutionary history of a long-extinct animal
phylum. Oxford monographs on Geology and Geophysics, 10:
212 p.; New York (Oxford University Press).
Talent J.A. & Mawson R. (1999). North-Eastern Molong Arch and
Adjacent Hill End Trough (Eastern Australia): Mid Palaeozoic
Conodont Data and Implications. Abhandlungen der
Geologisches Bundesanstalt, 54: 49-105.
from Darhan Muming’an Joint Banner, Inner Mongolia. In Li,
Weng-guo, Rong, Jia-yu & Dong, De-yuan (Eds), Silurian and
Devonian rocks and faunas of the Bateaobao area in Darhan
Muming’an Joint Banner, Inner Mongolia: 153-265 [in Chinese
with English abstract].
in Central Jilin Province. Acta Micropaleontologica Sinica, 3:
421-428. [in Chinese with English abstract].
Winder C.G. (1976). Enigmatic objects in North America
Ordovician history along the eastern flank of the Cincinnati Arch in Southern

Manuscript received 19 June 2007
Revised manuscript accepted 4 October 2007