INTRODUCTION

Along the steep slopes of the Capo Milazzo Peninsula (NE Sicily; Fig. 1), discontinuous lenses of yellowish fine sands and silts are exposed. These sediments (Fig. 2) were deposited unconformably on Miocene shallow water sediments and/or metamorphic rocks of the Calabride Complex (Fois, 1990a, b). The age of these sediments is mostly Gelasian (Early Pleistocene), but locally it may reach the Sicilian (Violanti, 1988, 1991).

The ostracod fauna of this sedimentary succession has been studied by Sciuto (2003, 2005, 2009); the lower Gelasian layers are characterized mainly by Bythocypris obtusata (Sars, 1866), Henryhowella sarsi profunda Bonaduce, Barra & Aiello, 1999, Bairdoppilata profunda Aiello, Barra & Bonaduce, 2000, Costa tricostata plicocenica Ruggieri, 1992, and also by Quasibuntonia radiotopora (Seguenza, 1880) and Agrenocythere plicocenica (Seguenza, 1880), the latter species listed among the psychrospheric ostracods by Benson (1972). The higher Sicilian layers are characterized by a significant increase in the psychrospheric ostracods by Benson (1972). The association consists again almost exclusively of bathyal taxa such as Bythocypris obtusata (Sars, 1866), B. bosquetiana (Brady, 1866), Ruggieriella decemcostata Colalongo & Pasini, 1980, Henryhowella sarsi profunda Bonaduce, Barra & Aiello, 1999, Quasibuntonia radiotopora (Seguenza, 1880), Retibythere (Bathybythere) scaberrima Brady, 1886, Pseudocythere armata Bonaduce et al., 1980 and Bythocythere mylaenis Sciuto, 2009. Also the Krithe group is well represented and reaches a dominance of 4.2% mostly with Krithe compressa (Seguenza, 1880). Further taxa such as Cytheropteron testudo Sars, 1869, Pajenborchella malaiensis cymbula Ruggieri, 1950, Pedicythere phyne Bonaduce, Ciampo & Masoli, 1975, Typhloeucytherura calabra Colalongo & Pasini, 1980 and Profundobythere sp. as well as Sclerochilus gr. contortus (Norman, 1861), Paradoxostoma spp. and Paracytherois spp. are rare.

The aim of this paper is to complete the analysis of the ostracod fauna from Capo Milazzo by a new sampling of the same productive layers and a re-examination of previously undetermined material.

MATERIALS AND METHODS

The new species described in this paper were recovered from two samples, belonging to the same stratigraphic horizon, of yellow calcareous sandy-silts and silts (Fig. 2). The outcrop is located at Punta Messinese, the western ending point of the Capo Milazzo Peninsula (samples Faro 1 and Faro 2; Tav. Milazzo, F.253 IV SO, 38°16’09”N, 15°13’27”E of the “Carta d’Italia alla scala 1:25.000”). Sandy silts locally overlay the Messinian Porites limestones, filling a previous depression. Owing to the presence of Hyalinea baltica (Schroeter, 1783) and Globorotalia truncatulinoides excelsa Sprovieri, Ruggieri & Unti, 1980 their age can be referred to the Sicilian Stage (sensu Gibbard & Cohen, 2008). This isolated sediment pocket represents the earliest bathyal layers so far recognised in the area.

The specimens were examined and measured under a LMU Tescan Vega II SEM.

The material is housed in the Museo Paleontologico of the Catania University. The repository number of three Holotypes (PM.C. O-2-4H. 25.02.2012) and fifteen Paratypes (PM.C. O-10-24 P. 25.02.2012) is given in the systematic descriptions.
SYSTEMATIC DESCRIPTIONS

Class Ostracoda Latreille, 1806
Order Podocopida Sars, 1866
Family Bairdiidae Sars, 1887
Subfamily Bythocypridinae Maddocks, 1969

Genus Bythocypris Brady, 1880

Bythocypris antoniettae n. sp. (Pl. 1, figs 1-4)

Derivatio nominis - From Prof. Antonietta Rosso, Palaeontologist at the University of Catania, Italy, for her research on Pleistocene and Recent invertebrates.

Material - 15 specimens.

Holotype - The carapace (PMC. O 2H. 25.02.2012) figured in Pl. 1, fig. 1 (L = 1470 μm, H = 950 μm).

Paratypes - The right valve figured in Pl. 1, fig. 4, two right valves from the same samples and seven carapaces (PMC. O 10-20 P. 25.02.2012).

Type locality - Punta Messinese at the farthest end of the Capo Milazzo Peninsula (Tav. Milazzo, F.253 IV SO, 38°16'09"N, 15°13'27"E of the “Carta d’Italia alla scala 1:25.000”). Yellow sandy-silts from the Globorotalia truncatulinaoides excelsa Zone of the Sicilian (upper part of the MPle 1 Zone to the lower part of the MPle 2 Zone).

Stratigraphic Range - Sicilian Stage to post Wurmian of the central Mediterranean area.

Diagnosis - Bythocypris antoniettae n. sp. is characterized by a smooth, flattened and bean- shaped carapace with strongly asymmetric valves.

Description - Large-sized carapace, bean shaped in lateral view (Pl. 1, fig. 1), compressed and fusiform in dorsal view.

Valves strongly unequal: right valve sub trapezoidal, left valve semicircular, more rounded and higher than the right valve. Length /Height ratio of the LV = 1.5. LV strongly overlapping RV, mainly dorsally.

In both valves: anterior margin wide and regularly arched, posterior margin rounded and slightly acute, ventral margin convex with a central marked oral curvature. Dorsomedian margin straight in the right valve, strongly arched in the left valve.

Outer surface smooth. Normal pore-canals simple and small, visible only on the inner surface of the valve (Pl. 1, fig. 4).

Inner lamella: anteriorly and posteriorly wide, reduced to the minimum ventrally; marginal zone narrow, vestibula present in the antero-ventral and postero-ventral areas. Marginal pore canals not visible.

Hinge adont and muscle scars as for the genus (Pl. 1, fig. 3).

No evidence of sexual dimorphism. Several juvenile specimens are present in the studied samples, but the specimens are not included in the type series.

Remarks - Bythocypris antoniettae n. sp. shows features which can be related to Bythocypridinae Maddocks, particularly the thin and smooth carapace, the adont hinge and the muscle scars. This subfamily includes two genera: Zabythocypris Maddocks, 1969 and Bythocypris Brady, 1880. Species belonging to the former genus show morphological features very similar to those of B. antoniettae n. sp. such as the very compressed, bean shaped, highly arched carapace but with the LV much higher than the RV. Nevertheless the type species of the genus Zabythocypris ancipita Maddocks, 1969, shows a spine in the left valve which was interpreted by Maddocks (1969) as an immature character. Conversely, Athersuch & Gooday (1979) attributed to this spine a diagnostic generic value. Particularly, this feature represents the main difference between the two genera. This excludes the attribution of the present species to Zabythocypris. Aiello et al. (1996a), believe that the characteristic of Bythocypris is the asymmetry of the valves and the overlap of the LV on the RV. Therefore, according to these authors, the species has been assigned to Bythocypris.

Bythocypris Brady, 1880 is a bathyal taxon, known from the Palaeozoic to the Recent, with a world wide distribution. This genus includes several species, fifteen of which still living (Maddocks, 1969). Three of them, namely B. bosquetiana (Brady, 1866), B. obtusata (Sars, 1866) and B. reflexa Breman, 1975, are present in the Recent Mediterranean Sea but are also known as fossils from the Cenozoic. Bythocypris antoniettae n. sp. is very different from all those species because of the strong asymmetry of the valves with LV strongly overlapping RV. Furthermore, none of the above reported species shows a L/H ratio of the LV so high (1.5) as B. antoniettae n. sp.

On the basis of the remarks discussed above and of its peculiar morphology, Zabythocypris sp. reported by Breman (1975) is regarded here as a synonymous of B. antoniettae n. sp. Zabythocypris sp. was found only in core number 353 drilled from south-eastern part of the Adriatic Sea, at a depth of 1207 metres (Breman, 1975).
species was collected from sediments deposited during a very cold stage of the Early Pleistocene and was absent from the Upper Pleistocene and Holocene layers. In that core, *Zabythocypris* sp. was associated with other species such as *Bythocypris reflexa* and *Echinocythereis echinata* (Sars, 1866) pointing to a typical bathyal environment. Both species were considered by Breman (1975) as cold water indicators. *Bythocypris antoniettae* n. sp. is very similar to species found in extra Mediterranean areas, i.e., *Zabythocypris ancipita* Maddocks (1969, p. 108, figs 59 A-B) from deep waters (between 1190 and 1829 metres water depth) of Mozambique Channel. Particularly *Z. ancipita* shows size and L/H ratio comparable with those of *B. antoniettae* n. sp.

Family Cytheruridae Müller, 1894

Genus Cytheropteron Sars, 1866

Cytheropteron italoi n. sp.
(Pl. 1, figs 8-11)

2005 *Cytheropteron* sp. 1 Sciuto, p. 222.

Derivatio nominis - The species is named after Prof. Italo Di Geronimo, Palaeontologist at the University of Catania, Italy, for his research on Pleistocene and Recent invertebrates.

Material - 5 specimens.

Holotype - The right valve PMC. O 3H. 25.02.2012 (L = 530 μm, H = 396 μm) figured in Pl. 1, fig. 8.

Paratypes - The RV figured in Pl. 1, figs 9-10 and the LV figured in Pl. 1, fig. 11, from the same samples (PMC. O 21-22 P. 25.02.2012).

Type locality - Punta Messinese at the farthest end of Capo Milazzo Peninsula (Tav. Milazzo, F. 253 IV SO, 38°16'08"N, 15°13'27"E). Yellow sandy-silts from the *Globorotalia truncatulinoides excelsa* Zone of the Sicilian Stage (upper part of the MPle 1 Zone to the lower part of the MPle 2 Zone).

Stratigraphic Range - Sicilian Stage.

Diagnosis - *Cytheropteron italoi* n. sp. is characterized by a prominent ala with a large and elongate spine at its posterior attachment point.

Description - A medium-sized *Cytheropteron* species, characterized by elongate, sub rhomboidal carapace in lateral view. Valves unequal, RV strongly overlapping the LV dorsally.

Anterior margin wide and regularly rounded, dorsal margin arched and convex passing regularly to the caudal process of the posterior area. Caudal process elongate and acute. Ventral margin sinuous with a light oral convexity anteriorly.

Alar process strong, prominent, pointed and arched backwards, located in the central ventral area, slightly shifted forwards; only a single large and elongate spine at the posterior attachment point of the ala.

Anterior and posterior end acute in dorsal view, the latter one more sharpened than the former one. Alar process attached in central area with a sharply bending anteriorly, posteriorly forming a continuous wide arc to the center of which is the spine.
Cytheropteron rossanae n. sp.
(Pl. 1, figs 12-16)

2005 Cytheropteron sp. 2 Sciuto, p. 222.

Derivatio nominis - The species is named after Prof. Rossana Sanfilippo, Palaeontologist at the University of Catania, Italy, for her research on Pleistocene and Recent invertebrates.

Material - 4 specimens.

Holotype - The RV PMC. O 4H. 25.02.2012 (L = 762 μm, H = 520 μm) figured in Pl. 1, fig. 12.

Paratypes - Two LV from the same samples (PMC. O 23-24 P. 25.02.2012).

Type locality - Punta Messinese at the farthest end of Capo Milazzo Peninsula (Tav. Milazzo, F.253 IV SO, 38°16’09”N, 15°13’27”E). Yellow sandy-silts from the Globorotalia truncatulinoides excelsa Zone of the Sicilian Stage (upper part of the MPle 1 Zone to the lower part of the MPle 2 Zone).

Remarks - The genus Cytheropteron Sars, 1866 includes eurybatic species, known from the Jurassic. It has a worldwide distribution and it is presently reported from the Mediterranean Sea with twelve living species (SIBM, 2005); several of them have been also reported from the Mediterranean area as fossils from Cenozoic sediments (Aiello et al., 1996b).

Cytheropteron italoi n. sp. shows a general shape similar to some species of the genus such as C. vespertilio (Reuss, 1850), C. venustum Bonaduce, Ciampo & Masoli, 1976, C. pseudoalatum Colalongo & Pasini, 1980 and particularly C. lumalatum Ayress et al., 1996. Nevertheless it is distinguishable from all of them because of its smooth surface, the shape of the alar process and the only one large and above all elongated spine at the posterior attachment of the alae.

Outer surface smooth.
Inner lamella wide anteriorly, narrow posteroventrally. Anterior vestibulum large, posterior one small (Pl.1, fig. 9).

EXPLANATION OF PLATE 1

New species from Lower Pleistocene of Capo Milazzo.

Figs 1-4 - Bythocypris antoniettae n. sp.
2. Left valve, internal lateral view. Paratype PMC. O 10 P. 25.02.2012 (scale bar 200 μm).

Figs 5-7 - Buntonia sp. 1
5. Right valve, external lateral view (scale bar 200 μm).
6. Right valve, internal lateral view (scale bar 200 μm).
7. Right valve, internal lateral view: hinge (scale bar 200 μm).

Figs 8-11 - Cytheropteron italoi n. sp.
9. Right valve, internal lateral view. Paratype PMC. O 21 P. 25.02.2012 (scale bar 100 μm).
10. Right valve, internal lateral view. Paratype PMC. O 21 P. 25.02.2012 (scale bar 100 μm).

Figs 12-16 - Cytheropteron rossanae n. sp.
14. Left valve, dorsal view: detail of alar process (scale bar 100 μm).
15. Right valve, external lateral view: detail of the duplicature in the posterior marginal area (scale bar 100 μm).
16. Right valve, hinge (scale bar 100 μm).
Stratigraphic Range - Sicilian Stage.

Diagnosis - Cytheropteron rossanae n. sp. is characterized by an inflated carapace sub-rhomboidal in lateral view, with short caudal process and short and rounded alae.

Description - A medium sized very thin-shelled Cytheropteron species, characterized by a sub-rhomboidal carapace in lateral view (Pl. 1, fig. 12).

Valves unequal, RV overlaps the LV dorsally. Anterior margin rounded, dorsal margin convex forming an obtuse angle at about half length; posterior margin almost straight with a short caudal process at two thirds of the height. Ventral margin sinuous with slight oral convexity. Anterior, posterior and dorsal marginal area flattened and wide. Central part of the valves inflated with alar process in central ventral areas marked by a thin and curved ridge.

Carapace inflated in dorsal view with marginal area flat and pointed, alar process rounded.

Outer surface smooth except for the lower surfaces of the alae showing a weak reticulation (Pl. 1, fig. 14).

Inner lamella wide anteriorly, narrow postero-ventrally. Vestibula present: the anterior one large, the posterior one narrow. Thin longitudinal ribs (Pl. 1, fig. 15) visible on the inner side of the postero-ventral marginal area.

Hinge entomodont (Pl. 1, fig. 16). Muscle scars not visible. No evidence on sexual dimorphism. Several juvenile specimens are present in the studied samples. However they are not included in the type series.

Remarks - This species has been confidently assigned to the genus Cytheropteron Sars, 1866 using morphological features such as the general shape of the carapace, the alar processes and the hinge, even if muscle scars are lacking.

Cytheropteron rossanae n. sp. is slightly similar to Cytheropteron sp. 1 described by Yasuhara et al. (2009) from Quaternary sediments of bathyal environments of the North Atlantic Ocean because of the inflated carapace and the flattened marginal areas. Nevertheless, C. rossanae n. sp. can be distinguished from Yasuhara’s species because of its smooth surface and the curved ridge that marks the alar processes.

Family TRACHYLEBERIDIDAE Sylvester-Bradley, 1948
Subfamily BUNTONINAE Apostolescu, 1961

Genus Buntonia Howe, 1935
(in Howe & Chambers, 1935)

Buntonia sp. 1
(Pl. 1, figs 5-7)

Stratigraphic Range - Sicilian Stage.

Material - 3 specimens.

Description - Buntonia sp. 1 possesses juvenile features and it is characterized by sub triangular valves in outline. Medium sized carapace, valves unequal. Anterior margin rounded passing to the dorsal margin through a marked obtuse corner. Dorsal margin straight and sloping towards the posterior margin. Posterior margin acute and rounded in RV, postero-dorsal zone raised in LV. Ventral margin sinuous with a marked oral curvature. In dorsal view wedge-shaped, obtuse at posterior end and acute at anterior end with the maximum thickness located at the postero-central zone.

Outer surface slightly reticulated especially in the posterior and ventral area; meshes are characterized by secondary ornamentation made of numerous very small pits (Pl. 1, fig. 5). A marked longitudinal ridge runs from the centro-ventral area to the postero-ventral end, in correspondence with the maximum carapace thickness. Two parallel series of tubercles run parallel to the posterior margin. Normal pore canal not visible.

Eye tubercles absent.

Inner lamella anteriorly and postero-ventrally, reduced to the minimum ventrally.

Flange prominent, flattened and radially striated, larger anteriorly and narrower postero-ventrally. Selvage marked around the outline.

False pore canals numerous along the anterior and ventral margin.

Hinge merodont (Pl. 1, fig. 7): a straight groove parallel to the dorsal margin with one simple small and elongated tooth at the each extremity; hinge on the left valve complementary. Central muscle scars as for the genus (Pl. 1, figs 5-6).

Remarks - Buntonia sp. 1 is very similar to Buntonia cf. B. mackenziei Puri & Hulings, 1976 reported by Whatley & Coles (1987) from the Late Pliocene of the LEG 44 in Atlantic Ocean. Also this latter species shows juveniles features.

DISCUSSION

The ostracod fauna associated to the four species here described (Bythocypris antoniettae n. sp., Cytheropteron italic n. sp., Cytheropteron rossanae n. sp. and Buntonia sp. 1) shows analogous composition and structure in both the examined samples and it is typical of bathyal environments (Benson, 1984; Dingle & Lord, 1990). Bythocypriis obtusata (Sars, 1866), B. bosquetiana (Brady, 1866), Bairdia conformis (Terquem, 1878) and Sclerochilus contortus (Norman, 1861) dominate the fauna and constitute about 40% of the ostracod material. The 23% of the specimens is represented by Cytherella vulgatella Aiello et al., 1996, Pseudocycythea caudata Sars, 1866, P. armata Bonaduce et al. 1980 (Fig. 3d), Anchistrocheles interrupta Aiello, Barra & Bonaduce, 1996c, Krithe compressa (Seguenza, 1880), Argilloecia robusta Bonaduce, Ciampo & Masoli, 1975 and Bithocythere mylaensis Sciuto, 2009 (Fig. 3b). About 70% of the total number of the species is represented by only a few specimens. Among these, remarkable is the presence of Cytheropteron testudo Sars, 1869 (Fig. 3a), Quasibuntonia radiatopora (Seguenza, 1880) (Fig. 3c) and Retbythere (Bathybythere) scaberrima Brady, 1886.

The fossil association contains some taxa whose distribution seems to be strongly influenced by temperature rather than by other factors. These are R. scaberrima Brady, 1886, Q. radiatopora (Seguenza, 1880), C. testudo Sars, 1869, B. obtusata (Sars, 1866) and probably also B. mylaensis Sciuto, 2009.
The first two species are indicated as psychrospheric by Benson (1972). *C. testudo* Sars, 1869 is a species with a present geographical distribution restricted from the Norwegian coasts to the Arctic bioprovince and it is considered one of the northern guest widespread in the Mediterranean during the Quaternary (Faranda & Gliozzi, 2011). This species has been found in western Laptev Sea, at 68 m water depth by Stepanova et al. (2003); along the Norwegian coast, at depth of 80-240 m, and in the Recent Atlantic, between 1380 and 3526 m water depth by Dingle & Lord (1990); in the Queensland Plateau (SW Pacific) in Holocene to Recent sediments deeper than 500 m by Swanson & Ayress (1999). As fossil the species has been reported from the Early Pliocene to the Quaternary from bathyal sediments of the Atlantic Ocean (Whatley & Coles, 1987); from MPL5 to the Early Pleistocene in bathyal sediments of the Mount S. Nicola section (Aiello et al., 1996b) and at the end, the last occurrence in the Mediterranean Sea corresponds to the Last Glacial (Montcharmont-Zei et al., 1985). Therefore *C. testudo* could be considered as a stenothermic species restricted to very cold waters independently of depth. Similarly *B. obtusata* has been reported from Norwegian and British coasts between 145-165 m water depth by Sars (1928), in the recent Mediterranean Sea at depths between 150-2905 m (Puri et al., 1969). Finally *B. mylaensis* has been collected from sediments sampled at 745 m depth in the Northern Ionian Sea dating from the post Würmian acme (Malinverno et al., 2010).

Consequently, these data showing that the determining factor in the ecological distribution of these species is the low water temperature and not the depth, allow to consider the ostracod association as indicative of marine environmental condition characterized by very low temperatures.

Particularly, *Bythocypris antoniettae* n. sp. was found by Breman (1975) in an interval of the core 353 in the bathyal sediments of Adriatic Sea, corresponding, according to Van Straaten (1966), to a very cold period of the Early Pleistocene. These data allow us to consider *Bythocypris antoniettae* n. sp. as a palaeoclimatic cold marker. Further findings of the other species here described will be able to provide data on their ecological distribution.

ACKNOWLEDGEMENTS

I thank A. Rosso (University of Catania) for preliminary discussions and suggestions. Thanks are also due to two referees G. Ciampo (University of Napoli) and E. Gliozzi (University “La Sapienza” Roma) and to the Co-Editor M. Balini (University of Milano) for their critical review. The SEM photos were taken by Alfio Viola (University of Catania).

REFERENCES

Bollettino della Società Paleontologica Italiana, 51 (2), 2012

Manuscript received 02 April 2012
Revised manuscript accepted 21 September 2012
Published online 28 September 2012
Editor Marco Balini