The fossil bird associations from the early Middle Pleistocene of the Ragusa province (SE Sicily, Italy)

Marco PAVIA & Gianni INSACCO

The fossil avifauna of Sicily is little known, except for a few studies on bird remains from archaeological sites, where only extant species and continental-like bird associations are listed (Tyrberg, 1998, 2013), and for preliminary analyses of Middle Pleistocene birds from Contrada Fusco and Spinagallo Cave (Siracusa, South-Eastern Sicily), as well as detailed studies on particular species (Cassoli & Tagliazucchi, 1996; Pavia, 1999, 2001, 2004, 2007, 2008; Pavia & Mourer-Chauviré, 2002). In the two last centuries, many localities from Sicily with fossil vertebrate assemblages have been found and excavated (Bonfiglio & Burgio, 1992). Recent palaeontological analyses (Bonfiglio et al., 1997, 2001, 2002; Di Maggio et al., 1999; Petruso et al., 2008) arranged the Pleistocene vertebrate assemblages into five Faunal Complexes (FC). Four of these mainly include endemic fossil mammals and reptiles, the “Monte Pellegrino FC” of the Late Pliocene/Early Pleistocene, the “Elephas falconeri FC” of the early Middle Pleistocene, the “Elephas mnaidriensis FC” of the late Middle Pleistocene/Late Pleistocene and the “Pianetti/S. Teodoro FC” of the Late Pleistocene. The fifth, the “Castello FC”, dating from the latest Pleistocene, contains extant continental species together with Paleolithic artifacts. Fossil bird remains were found in each FC (Bonfiglio et al., 1997, 2002; Petruso et al., 2008), except for the oldest one, the “Monte Pellegrino FC” which contains only endemic small mammals and reptiles (Burgio & Fiore, 1988). The analyses of some Sicilian fossil birds (Pavia, 2000, 2004, 2008; Pavia & Mourer-Chauviré, 2002) provided detailed information on the avifaunas of the Middle Pleistocene “Elephas falconeri FC” and “Elephas mnaidriensis FC”, i.e., the 2nd and the 3rd FC of Bonfiglio et al. (2001). These data revealed that endemic bird associations were present in Sicily during the Middle and Late Pleistocene and were included in a revision of the fossil bird associations of the Mediterranean islands isolated in Middle and Late Pleistocene time (Mourer-Chauviré et al., 2001). In fact, Sicily was excluded in the first analyses of the Pleistocene avifaunas of Mediterranean islands (Alcover et al., 1992), because it was supposed that Sicily and the mainland were connected during that time, so no endemic species inhabited the island during the Pleistocene.

In this paper we present the analysis of the fossil bird remains of the early Middle Pleistocene “Elephas falconeri FC” found in different localities of the Comiso and Ragusa areas, in the South-Eastern part of Sicily (Figs 1-2), coming from both fissure fillings and lacustrine deposits.
STUDY AREA

The Ragusa province, in the south-eastern part of Sicily (Fig. 1), is characterised by the calcareous Hyblean Plateau, a Cretaceous-Miocene carbonatic platform. The central part of the Plateau, constituting the Ragusa platform, has undergone gradual uplifting, while its margins were affected by the progressive sinking of the Hyblean substratum below the Plio-Peistocene coverings. In particular, on the western edge of the Hyblean Plateau, in the area of Comiso, a continental limnic succession (Fig. 2a), made up by palaeosols, lacustrine and aeolian deposits is interbedded between Lower Pleistocene marine deposits and early Middle Pleistocene marine sands. In the Comiso area, two Pleistocene lacustrine basins were recognized (Conti et al., 1979) with the basal clays of brackish environment interbedded with Lower Pleistocene marine deposits and early Middle Pleistocene marine sands. In the Comiso area, two Pleistocene lacustrine basins were recognized (Conti et al., 1979) with the basal clays of brackish environment interbedded with Lower Pleistocene marine sands, marking the transition from a marine to a continental environment. The detected limnic sequence of the Comiso area is constituted by five main lithotypes organized in eleven recognized layers of fine sands, silts and clays alternating with soil horizons and aeolian sands (Bonfiglio & Insacco, 1992). Pulmonate and freshwater mollusks and vertebrate remains are extensively preserved in almost all lithologic units, some of them still in anatomic connection. After systematic field research of one of the authors (G.I.), numerous vertebrate remains have been collected in the various levels of the Pleistocene limnic sequence of the Comiso area (Bonfiglio & Insacco, 1992). The palaeontological analyses made on these remains revealed the presence of amphibians, reptiles, birds and endemic mammals of the late Middle Pleistocene “Elephas falconeri FC” (Bonfiglio et al., 2002). In particular, some elephant remains are slightly bigger than the known variability of Elephas falconeri (Bonfiglio & Insacco, 1992). This fact may suggest, together with the age of the deposits indicated by the geological framework, that the vertebrates from Comiso belong to an early stage of the “Elephas falconeri FC” and these bigger elephants represent the ancestors of the typical Elephas falconeri (Busk, 1867) commonly found in several Sicilian localities (Bonfiglio & Insacco, 1992; Bonfiglio et al., 2003).

SYSTEMATIC PALAEONTOLOGY

The systematic analysis was carried out on 145 specimens found in various localities of the Comiso and Ragusa areas and currently stored in the Museo Civico di Storia Naturale di Comiso (MCSNC). The fossil remains have been morphologically compared with recent skeletal material stored at the Dipartimento di Scienze della Terra of the Università di Torino, Italy (Marco Pavia Ornithological Collection - MPOC), at the Museo Civico di Storia Naturale di Carmagnola, Italy and at the University Claude Bernard Lyon 1, Villeurbanne, France.
This study revealed the presence of thirty taxa; three of them are extinct and endemic of Sicily and Malta (†). The distribution of the different taxa in the various localities of the study area is reported in Tab. 1. The systematic order of bird species follows the Italian Bird List (Fracasso et al., 2009).

The morphological descriptions and remarks are presented for selected taxa indicated with (*) in Tab. 1, while the synonymic lists are given only for the extinct species. Osteological terminology used in this publication principally follows Baumel & Witmer (1993); measurements were taken after von den Driesch (1976).

Order Anseriformes Wagler, 1831
Family Anatidae Vigors, 1825
Genus Cygnus Bechstein, 1803

Cygnus equitum Bate, 1916
(Pl. 1, fig. 1)

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Comiso</th>
<th>CA</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cygnus equitum Bate, 1916 (*)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Cygnus cygnus (Linnaeus, 1758)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Anser anser (Linnaeus, 1758)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anser albilongs (Scopoli, 1769)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anser sp.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Tadorna sp.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Anas platyrhynchos Linnaeus, 1758</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anas crecca vel A. querquedula</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anas sp.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Aythya nyroca (Güldenstädlt, 1770)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Anatidae indet.</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tachybaptus ruficollis (Pallas, 1764)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciconia ciconia (Linnaeus, 1758)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grus grus (Linnaeus, 1758)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grus melitensis Lydekker, 1890 (*)</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fulica atra Linnaeus, 1758</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otis tarda Linnaeus, 1758</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrax tetra (Linnaeus, 1758)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pluvialis apricaria (Linnaeus, 1758)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numenius phaeopus vel N. tenuirostris</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scolopax rusticola Linnaeus, 1758</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sternaidae indet.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Charadriformes indet.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pterocles alchata (Linnaeus, 1766)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columba livia Gmelin, 1769</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Columba palumbus Linnaeus, 1758</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptopelia turtur (Linnaeus, 1758)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picus canus Gmelin, 1789*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melanocorypha calandra (Linnaeus, 1766)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Turdus sp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corvidae indet. (*)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Passeriformes indet.</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Tab. 1 - List of bird taxa from studied localities; CA = Contrada Annunziata; CT = Contrada Tabuna. (*): taxa commented in the text. (): extinct taxa.

M. Pavia & G. Insacco - Birds from the Middle Pleistocene of the Ragusa province

1916 Cygnus equitum Bate, p. 427, text-figs 1A, 2.
1933 Cygnus equitum Bate - LAMBRICHT, p. 386, Fig. 129.
1964 Anser equitum Bate - BROOKS, p. 213.
1998 Cygnus equitum Bate - NORTHCOTE, pp. 725-733, Pl. 69, figs 2, 5, 8; Pl. 70, figs 1, 3, 6, 9, 12; text-fig. 1b, c, i, k.
1992 Anser equitum Bate - ALCOVER et al., p. 281.
1992 Cygnus equitum Bate - NORTHCOTE, pp. 286-287, Fig. 2.
1997 Cygnus equitum Bate - BOCHENSKY, p. 304.
1997 Cygnus equitum Bate - LIVEZEN, p. 473.
2000 Cygnus equitum Bate - PAVIA, p. 38, pp. 96-98, Pl. 1, fig. 11.
2002 Cygnus equitum Bate - MLIKOVSKY, p. 114.

Material - Damaged proximal left humeri (MCSNC 368, 369-370) from Contrada Annunziata (Ragusa). The three fragments belong to two bones, as the fragments 369 and 370 were glued after the cataloguing (see Pl. 1, fig. 1). For measurements, see Tab. 2.

Remarks - Two proximal humeri found in a karst fissure at Contrada Annunziata show the characteristics of a big-sized Anatidae. Their size is comparable to Cygnus and Anser but is closer to the Recent Anser anser (Linnaeus, 1758). On the contrary, the morphology is much more similar to the genus Cygnus. Actually, our specimens differ from Anser in having a less protruding caput humeri, a well pronounced margo caudalis and the crista deltpectoralis much more developed distally. These morphological characteristics can also be observed in the bones figured by Northcote (1988) from the Maltese Pleistocene and in the type humerus (Bate, 1916). The bones are not perfectly preserved, but their morphology allows to refer them to Cygnus equitum. The systematic position of this taxon is uncertain, but we follow here the opinion of Northcote (1992) and Livezey (1997), considering it a valid species of the genus Cygnus.

Following the analysis made by Northcote (1988), Cygnus equitum was capable to fly, even if the wing shape, more elliptical than that of the Recent Cygnus species, did not enable to fly for long distances. This species was only known from the Pleistocene of the Maltese Archipelago, where it is not common, and the record from Contrada Annunziata is the only one from Sicily (Petruso et al., 2008). This represents a new confirmation of the connection between the Maltese Archipelago and Sicily, at least the South-Eastern part, during the late Middle Pleistocene “Elephas falconeri FC” (Bonfiglio et al., 2002).

Cygnus cygnus Linnaeus, 1758
(Pl. 1, fig. 2)

Material - A proximal left scapula (MCSNC 600); a proximal right humerus (MCSNC 593); a distal left ulna (MCSNC CR Ih 744); a proximal right radius (MCSNC CR Ih 745); a proximal right radius (MCSNC CR Ih 747); a distal right radius (MCSNC CR Ih 667); a left os carpi ulnare (MCSNC 613); a distal left tibiotarsus (MCSNC CR Ih 663); a distal right tarsometatarsus (MCSNC 618). All the bones are from the Comiso area. For measurements, see Tab. 2.

Remarks - Some bones from the limnic deposits of the Comiso area are referable to Cygnus cygnus, as they are
indistinguishable in morphology and size from the Recent specimens, also following the indications of Bacher (1967) and Northcote (1981, 1988). Even if the Cygnus remains are quite common in the Comiso area, for the numerous preserved specimens, there is no evidence of the presence of other Cygnus species in those deposits. The limnic deposits of Comiso are considered older than the typical sites of the “Elephas falconeri FC” including the ones of the Ragusa area (Bonfiglio & Insacco, 1992), thus the presence of C. cygnus in deposits older than those of Contrada Annunziata seems to confirm the hypothesis that C. cygnus is the ancestor of Cygnus equitum (Northcote, 1988). C. cygnus is now breeding in the Northern part of Europe and Asia, with the wintering ground at median latitudes, e.g. Central Europe, and with scarce records in the Mediterranean Basin. The species was more common during the cold phases of the Pleistocene (Tyberg, 1998, 2013), thus the presence of populations in Sicily and Malta during a warm phase of the Pleistocene could be explained with a change of ecological characteristics of the species during time.

Order Gruidae Bonaparte, 1854
Family Gruidae (Vigors, 1825)
Genus Grus Brisson, 1760

Grus melitensis Lydekker, 1890
(Pl. 1, figs 5-6)

1890 Grus melitensis Lydekker, pp. 408-409, Pl. 36, figs 2, 4-5.
1891 Grus melitensis Lydekker - Lydekker, pp. 162-163, fig. 35.
1933 Grus melitensis Lydekker - Lambrecht, p. 524-525.
1975 Grus antigone Linnaeus - Mourer-Chauviré et al., p. 47.
1977 Grus melitensis Lydekker - Harrison & Cowles, p. 27.
1982 Grus melitensis Lydekker - Northcote, pp. 76-80, Pl. 6, figs a-f, text-figs 1-3.

Material - A proximal right ramus mandibulare (MCSNC 333) and a complete right femur (MCSNC 310) from Contrada Annunziata (Ragusa); a proximal left tibiotarsus (MCSNC CR Ih 754) and a left shaft of a tibiotarsus (MCSNC CR Ih 763) from the Comiso area. For measurements, see Tab. 2.

Remarks - The morphology of the femur corresponds to the known material of Grus melitensis (Northcote, 1982, 1984, 1992; Northcote & Mourer-Chauviré, 1985). In particular, the ridge below the facies articularis antitrochanterica is absent and this facies is flat as in the Maltese specimens and not rounded as in Grus antigone (Linnaeus, 1758). The mandibular condyle, the tibiotarsus and the fibula are referred to this taxon for their size, clearly bigger than the Recent Grus grus (Linnaeus, 1758), as none of these bones are preserved in the type-series (Northcote, 1988).

The hindlimb bones of G. melitensis are relatively well known and their morphology seems to indicate that this species walked more efficiently than other Grus species (Northcote, 1992). On the contrary, the flying capability of G. melitensis is currently unknown, as the few forelimb bones of relatively smaller size referred to G. melitensis and considered the proof of a reduced flying capability of the species (Harrison, 1979) were reattributed to the Recent Grus grus by Northcote (1984). The coexistence of the two species is also documented in this paper, as a distal right ulna attributed to G. grus is reported from Contrada Annunziata.

The specimens here documented, together with the one found in the Spinagallo Cave (Pavia, 1999), represent the first record of G. melitensis outside the Maltese Archipelago. As for Cygnus equitum, this finding confirms the good connection of the southern part of Sicily with the Maltese Archipelago.

The systematic position of G. melitensis was debated in several papers, but Northcote (1992) confirmed its validity

EXPLANATION OF PLATE 1

Bird bones from the early Middle Pleistocene of the Comiso and Ragusa areas. The specimens 1, 5-6 and 7 are from the fissure fillings of Ragusa; the others are from the limnic deposits of the Comiso area.

Fig. 1 - Cygnus equitum Bate, 1916; proximal right humerus (MCSNC 369-370), caudal view.
Fig. 2 - Cygnus cygnus Linnaeus, 1758; distal left tibiotarsus (MCSNC CR le 665), cranial view.
Figs 3-4 - Anas platyrhynchos Linnaeus, 1758; 3, right coracoid (MCSNC CR Ih 753), dorsal view; 4, left ulna (MCSNC CR Ih 755), ventral view.
Figs 5-6 - Grus melitensis Lydekker, 1890; left femur (MCSNC 310), cranial and caudal views.
Fig. 7 - Pterocles alchata (Linnaeus, 1766); right tibiotarsus (MCSNC 388), cranial view.
Fig. 8 - Pica cf. P. canus Gmelin, 1788; left ulna (MCSNC CR Ih 779), ventral view.
Fig. 9 - Corvidae indet., right humerus (MCSNC 607), caudal view.

Scale bars: 10 mm for figs 1-6 and 5 mm for figs 7-9.
also remarking on the differences from *Grus primigenia* Milne-Edwards, 1869-1871, a different giant extinct *Grus* species widespread in the European Pleistocene, even on islands (Northcote & Mourer-Chauviré, 1985). More recently, Milkovský (2002) considered *G. melitensis* as a synonym of *G. primigenia*, but we follow here the opinion of Northcote (1992) and we consider it as a valid species, even if a revision of all the material of *G. melitensis* is required in order to better understand its skeletal morphology and its relationships with the other *Grus* species, in particular with *G. primigenia*.

Order PTEROCIFORMES Latham, 1790
Family PTEROCILIDAE Bonaparte, 1831

Genus Pterocles Temminck, 1815

Pterocles alchata (Linnaeus, 1766)
(Pl. 1, fig. 7)

Material - A distal left tibiotarsus (MCSNC 387) and a distal right tibiotarsus (MCSNC 388) from Contrada Tabuna (Ragusa). For measurements see Tab. 2.

Remarks - Two distal tibiotarsi from Contrada Tabuna show the typical features of the Pteroclidae, in particular the additional foramen on the lateral side of the cranial surface located laterally to the pons supratendineus, that is typical of *Pterocles*. The size of the two bones, that probably belong to the same individual, allows to attribute them to *Pterocles alchata*, the smallest Palearctic species. The remains from Contrada Tabuna represent the oldest record of the species (Tyrberg, 1998, 2013) and the first record for Mediterranean Islands (Mourer-Chauviré et al., 2001). As this species does not show migratory habit in Western Palearctic population (del Hoyo et al., 1997), its presence in Sicily was probably related to a sedentary population that became later extinct, as this species is now only vagrant in Sicily (Brichetti & Fracasso, 2006).

Order PICIFORMES Meyer & Wolf, 1810
Family PICIDAE Vigors, 1825

Genus Picus Linnaeus, 1758

Picus cf. *P. canus* Gmelin, 1788
(Pl. 1, fig. 8)

Material - A complete left ulna (MCSNC CR Ih 779) from the Comiso area. For the measurements see Tab. 2.

Remarks - A complete left ulna of a Picidae is here dubitatively referred to *Picus canus*. The morphology of the bone clearly recalls the genus *Picus* for its pronounced tuberculum ligament collateralis ventralis, a deep impression brachialis and the ventral side of the cotyla dorsalis ulnaris not rounded. The overall dimensions of the bone (see Tab. 2) are clearly bigger than any Recent *Dendocopos*, but smaller than the Recent *Picus viridis* Linnaeus, 1758 falling outside its range of variability, thus recalling the smaller *P. canus*. Unfortunately, we were not able to compare directly the fossil bone with a skeleton of *P. canus*, so we prefer to leave the specimen in open nomenclature.

Order PASSERIFORMES Linnaeus, 1758
Family CORVIDAE Vigors, 1825

Corvidae indet.
(Pl. 1, fig. 9)

2000 Corvidae n. sp. - *Pavia*, pp. 56-57, Pl. 5, fig. 18.

Material - A shaft of right humerus (MCSNC 607) from the Comiso area.

Remarks - A single humerus from the limnic deposits of Comiso is referable to a small-sized Corvidae. This humerus is very similar, in size and morphology, to the more complete bones found in other localities of the “Elephas falconeri FC” such as Spinagallo, Marasà and Luparello Caves (Pavia, 1999, 2000). The direct comparison of the fossil bone with specimens of *Pica pica* (Linnaeus, 1758), *Garrulus glandarius* (Linnaeus, 1758), *Nucifraga caryocatactes* (Linnaeus, 1758) and the analysis of the characteristics reported by Tomek & Bocheński (2000) do not allow us to refer the material to any known genus within the Corvidae. The size of the fossil is intermediate between the smaller *Cyanopica cyanus* (Pallas, 1776) and *Perisoreus infaustus* (Linnaeus, 1758) and the bigger *G. glandarius* and *N. caryocatactes*. The presence of endemic species or subspecies of Corvidae on Mediterranean islands is reported in both living and fossil bird associations (Segui, 2001; Louchart, 2002; Brichetti & Fracasso, 2011), with morphologies not corresponding with this fossil taxon. The analysis of more complete bones from Sicilian localities will better define the taxonomic position of this taxon and its relationships within the Corvidae.

DISCUSSION

The fossil bones discovered in the studied localities near Comiso and Ragusa are well preserved, but rarely complete. Consequently, many of them can be referred only to a supraspecific taxon. Nonetheless, we are able to indicate the presence of at least thirty species (or species-group), mostly being still extant (Tab. 1). As most of the bird taxa have precise ecological needs, a palaeoenvironmental reconstruction of the Comiso lacustrine deposits and of the Ragusa platform is possible on the basis of the fossil bird associations found in the studied localities. The two areas cannot be treated together, as they are not coeval (Bonfiglio & Insacco, 1992), also following the indications of the geological framework (Conti et al., 1979). The palaeoenvironmental information given by birds from the Early Pleistocene onwards, when the avifaunas are constituted mostly by extant taxa, are very precise and sometimes much more effective than those given by the mammalian taxa, especially if the latter ones are inferred from extinct taxa (Bedetti & Pavia, 2007, 2013).
The fossil bird fauna found in different outcrops of the lacustrine succession of the Comiso area contains at least 19 taxa, mostly aquatic species, two of them extinct and endemic of Sicily and Malta: *Grus melitensis* and Corvidae indet. The lacustrine deposits of the Comiso area contain mainly Anatidae of different species, such as *Cygnus cygnus*, *Anser spp.*, *Anas platyrhynchos* Linnaeus, 1758 and *Aythya nyroca* (Güldenstädt, 1770), with other strictly aquatic species like *Tachybaptus ruficollis* (Pallas, 1766), *Fulica atra* Linnaeus, 1758 as well as rocky karstic plateau. As a consequence, the fossil bird associations found in the Comiso lacustrine deposits is much more diversified than those of the Ragusa platform.

The fossil bird associations here described are also of great importance from a palaeobiogeographical point of view, as they include *C. equitum*, the two *Grus* species, *Pluvialis apricaria* (Linnaeus, 1758) and the Anatidae. None of the taxa determined at specific level are in common between the Comiso lacustrine deposits and the Ragusa plateau, except *G. melitensis*, confirming the great diversity in the palaeoenvironment already suggested by the genesis of the fossiliferous deposits, as the Comiso area was characterised by a lacustrine basin, with different habitats, while the Ragusa platform was a rocky karstic plateau. As a consequence, the fossil bird association found in the Comiso lacustrine deposits is much more diversified than those of the Ragusa platform. The fossil bird associations here described are also of great importance from a palaeobiogeographical point of view, as they include *C. equitum* and *G. melitensis*, two extinct species previously recorded only on the Maltese Archipelago. The two species can be considered endemic of the Maltese Archipelago and southern Sicily as they are present only there, although the Pleistocene fossil avifauna of Southern Europe and the Mediterranean Basin is well known (Alcover et al., 1992; Mourer-Chauviré et al., 2001). Both species were probably able to fly such as many of the endemic bird species, while the flightless condition.

![Image of the document content]

Tab. 2 - Measurements (in mm) of the bones of the identified taxa found in the various sites of the Ragusa area. Measurements of bones that are slightly worn or damaged are given in parentheses. Abbreviations: GL: greatest length; LM: medial length; Wp: proximal width; Dp: proximal depth; Wd: distal width; Dd: distal depth; Ws: width of shaft; Ds: depth of the shaft; W: proximal width from caudal margin of facies articularis humeralis to acromion; Lfah: length of facies articularis humeralis; Wfah: width of facies articularis humeralis.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>GL (mm)</th>
<th>LM (mm)</th>
<th>Wp (mm)</th>
<th>Dp (mm)</th>
<th>Wd (mm)</th>
<th>Dd (mm)</th>
<th>Ws (mm)</th>
<th>Ds (mm)</th>
<th>W (mm)</th>
<th>Lfah (mm)</th>
<th>Wfah (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cygnus equitum</td>
<td></td>
</tr>
<tr>
<td>Humerus MCSNC 368</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.3</td>
<td>11.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humerus MCSNC 369-370</td>
<td></td>
<td>(32.5)</td>
<td>16.7</td>
<td></td>
<td></td>
<td>13.1</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cygnus cygnus</td>
<td></td>
</tr>
<tr>
<td>Scapula MCSNC 600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.7</td>
<td>17.2</td>
<td>11.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humerus MCSNC 593</td>
<td></td>
</tr>
<tr>
<td>Ulna MCSNC CR Ih 744</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.1</td>
<td>15.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius MCSNC CR Ih 667</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius MCSNC CR Ih 745</td>
<td></td>
<td>(16.6)</td>
<td>(14.8)</td>
<td></td>
<td></td>
<td>10.1</td>
<td>9.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius MCSNC CR Ih 747</td>
<td></td>
<td>10.7</td>
<td>12.0</td>
<td></td>
<td></td>
<td>7.1</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os carpi ulnare MCSNC 613</td>
<td></td>
</tr>
<tr>
<td>Tibiotarsus MCSNC CR Ih 665</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.3</td>
<td>23.9</td>
<td>10.7</td>
<td>8.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tarsometatarsus MCSNC 618</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27.7</td>
<td>18.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grus melitensis</td>
<td></td>
</tr>
<tr>
<td>Emimandible MCSNC 333</td>
<td></td>
</tr>
<tr>
<td>Femur MCSNC 310</td>
<td>139.9</td>
<td>130.1</td>
<td>32.8</td>
<td>25.8</td>
<td>31.6</td>
<td>30.2</td>
<td>13.5</td>
<td>12.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tibiotarsus MCSNC CR Ih 754</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tibiotarsus MCSNC CR Ih 763</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.9</td>
<td>9.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pterocles alchata</td>
<td></td>
</tr>
<tr>
<td>Tibiotarsus MCSNC 387</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.7</td>
<td>6.5</td>
<td>3.9</td>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tibiotarsus MCSNC 388</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.8</td>
<td>6.6</td>
<td>3.4</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picus cf. P. canus</td>
<td></td>
</tr>
<tr>
<td>Ulna MCSNC CR Ih 779</td>
<td>43.8</td>
<td>6.2</td>
<td>3.6</td>
<td>3.9</td>
<td>5.0</td>
<td>2.9</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corvidae indeterminate</td>
<td></td>
</tr>
<tr>
<td>Humerus MCSNC 607</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.1</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>
is not common, even in island taxa (Newton, 2003). The present finding represents the first Sicilian record of these two taxa, further supporting the good connection between the Maltese Archipelago and the South-Eastern part of Sicily during the late Middle Pleistocene “Elephas falconeri FC”. Interestingly, these records have a precise chronological attribution, that is not the case of the Maltese fossil records which need re-examination.

Most species here reported were already known from older deposits, in Sicily and Italy, with the exception of P. alchata for which the Contrada Tabuna finding represents the oldest occurrence (Tyberg, 1998, 2013; Bedetti, 2003).

The fossil birds from the Comiso lacustrine deposits are the oldest records of birds from Sicily (Bonfiglio et al., 2002). In addition, they contribute to the knowledge of the evolution of the Sicilian avifaunas as, together with the preliminary data published on the Spinagallo Cave (Pavia, 1999, 2004, 2007; Pavia & Mourié-Chaurié, 2002), allow to have a first draft on the composition of the avifauna of the Middle Pleistocene “Elephas falconeri FC”.

ACKNOWLEDGEMENTS

We would like to thank L. Bonfiglio (Messina) to introduce one to each other and allow this study possible and for her help during all phases of the work. We also thank Z. Boev (Sofia), R. Sardella (Roma) and R. Sanfilippo (Catania) for their comments, which improved the manuscripts. M. Pavia was financially supported by Syntheses Program (FR-TAF 2067 and NL-TAF 2255) and by Italian MIUR PRIN 2009MSSL9L 002 (resp. G. Pavia).

REFERENCES

M. Pavia & G. Insacco - Birds from the Middle Pleistocene of the Ragusa province

Pavia M. (1999). The Middle Pleistocene avifauna of the Spinagallo Cave (Sicily, Italy); preliminary report. Smithsonian Contribution to Paleobiology, 89: 125-127.

Published online 30 October 2013

Manuscript received 9 October 2012

Revised manuscript accepted 13 August 2013

165