First finding of a fossil fern (Matoniaceae) in the paleontological site of Pietrarroja (Benevento, Southern Italy)

Antonello BARTIROMO, Maria Rosaria BARONE LUMAGA & Sergio BRAVI

A. Bartiromo, Dipartimento di Scienze della Terra, Università degli Studi di Napoli “Federico II”, Largo San Marcellino 10, I-80138 Napoli, Italy; a.bartiromo@unina.it
M.R. Barone Lumaga, Orto Botanico Università degli Studi di Napoli “Federico II”, Via Foria 223, I-80139, Napoli, Italy; mrbarone@unina.it
S. Bravi, Dipartimento di Scienze della Terra, Università degli Studi di Napoli “Federico II”, Largo San Marcellino 10, I-80138 Napoli, Italy; sergiobravi@libero.it

KEY WORDS - Matoniaceae, Lower Cretaceous, Fossil-Lagerstätte, Southern Italy.

ABSTRACT - The Fossil-Lagerstätte of Pietrarroja (Benevento province, Southern Italy) is a paleontological site of international relevance mostly known for the discovering of the theropod dinosaur Scipionyx samniticus. The site has been recently dated to the early (basal) Albian on the grounds of the microfossils yields.

The fossil fern described in this paper has been collected at “Le Cavere” (a quarry close to the Pietrarroja village). It is preserved as a fossil plant impression and is at present stored at the Museo di Paleobotanica (Orto Botanico di Napoli). General and fine morphology of the fossil, a pinna fragment, allow us to ascribe it to the family Matoniaceae and probably to the genus Phlebopteris.

INTRODUCTION

Since the end of the XVIII century the Pietrarroja Cretaceous Fossil-Lagerstätte has been the object of several paleontological studies and observations (Breislak, 1798; Costa, 1853-1864) and later on, of geological and stratigraphical studies as well (D’Argenio, 1963; Catenacci & Manfredini, 1963; Freels, 1975; Bravi & Garassino, 1998). The majority of fossil remains is represented by fishes, mostly assigned to the genera “Coelodus” (fam. Pycnodontidae), *Lepidotes* (fam. Semionotidae), *Belonostomus* (fam. Aspidorhynchidae), *Clupavus* (fam. Clupavidae), *Diplomystus* (fam. Paraclepidae incertae sedis), together with other relatively rare genera. Decapod crustaceans are frequent (Bravi & Garassino, 1998); lacertilian reptiles, mesosuchids and dinosaurs (e.g. *Scipionyx samniticus* Dal Sasso & Signore, 1998) are also present, although rare. Recently, some fossil plants from this site have been studied: some leaves were assigned to the genus *Zamites*, Order Bennettitales, while some branches were assigned to *Brachyphyllum* (Bravi & Garassino, 1998).

GEOLOGICAL SETTING

The “Civita di Pietrarroja” (I.G.M. map 162 III SW -CUSANO MURTI) is a faulted monocline with an average strata dip of 15° E-SE; it is located at the eastern edge of the Matese massif (Fig. 1). The “Civita” is well limited by fault slopes showing a NW-SE and NE-SW orientation. The western side of the Civita is a 400 m-high, vertical slope (960 m a.s.l.), but the eastern side declines slightly.

From a palaeogeographic point of view, the structure is referred to the Abruzzi-Campania carbonate platform (D’Argenio et al., 1973; D’Argenio & Sgroso, 1974) which is characterized by an erosive gap, marked by bauxites, in the middle Cretaceous, cropping out in the north-western area of the southern Apennine (D’Argenio et al., 1987).

The “ichthyolitic level of Pietrarroja” crops out widely in the central part of the Civita, close to the Pietrarroja village. It is about 20 m thick and has recently been dated to the early (basal) Albian (Bravi & Garassino, 1998) on the grounds of its foraminiferal content.
including Ovalveolina reicheli De Castro, Paracoskinolina tunesiana Peybernes, and Cribellopsis cf. arnaudae Chiocchini (Fig. 2).

The sedimentological and palaeoenvironmental data indicate that the ichthyolitic level formed into a shallow, carbonate platform lagoon environment, frequently isolated from the open sea, dominated by slight tidal currents and exposed to storms (Bravi & Garassino, 1998). In the strata of the fossil site two main facies are usually alternated: one constituted by thin laminated mudstones and/or microdetritic limestones 1 to 10 cm thick, and the other represented by millimetric laminae sets of marly limestones, often rich in land plants remains, fossil fishes and sometime reptiles. The dinosaur Scipionyx samniticus Dal Sasso & Signore was found into one of the latter levels.

About 2 km NE from the “Civita di Pietraroja”, at the Mutria Mount, a bauxite level crops out. The limestones underlying this level show the same biofacies and a well-comparable age as the Pietraroja ichthyolitic level. This leads us to identify the Mutria Mount area as an emersed land that, in the early Albian was already rising out of the water and bordered the “Pietraroja lagoon”.

MATERIAL AND METHODS

The specimen described in this paper (Pl. 1) has been found in the “Le Cavere” locality, from which some plant remains in a calcareous-marly matrix have been already reported by Bravi (1996).

The specimen, temporarily stored in the Paleobotanical Museum of the “Orto Botanico di Napoli” (the definitive location will be indicated by the Soprintendenza ai Beni Archeologici di Salerno, Benevento, Avellino), is classifiable as an impression, according to the categories elaborated by Schopf (1975) for modes of plant fossil preservation.

This state of preservation has remarkably influenced the study, due to the scarcity of organic matter. Observations carried out at low angle sunlight, allowed the definition of some morphological features (Pl. 1, figs. 1-2). The UV-light study (Transilluminator Lourmat UV TFX-20:M, λ = 312 nm) allowed the identification of the scarce organic remains not otherwise visible, and helped to better define the morphology and the structure limits of the fossil (Pl. 1, figs. 3-5). The macro-photos have been taken with a Fuji s5000 digital camera, both in solar and UV light.

PALEONTOLOGICAL DESCRIPTION

Class Filicopsida
Order Filicales
Fam. Matoniaceae
Genus Phlebopteris Brongniart, 1836

The Matoniaceae have been recorded from the Late Triassic up to the present, but the family was common and widespread during the Jurassic and Early Cretaceous both in the Northern and Southern Hemisphere (Van Konijnenburg-van Cittert, 1993).

The genus Phlebopteris Brongniart has been subject of various revisions (Harris, 1961; Van Konijnenburg-van Cittert, 1993). The fronds of this genus are

EXPLANATION OF PLATE 1

fig. 1 - General view.
fig. 2 - Detail of the basal segment of the pinna, photographed in the sunlight.
fig. 3 - General view of the specimen photographed in UV light.
fig. 4 - Detail of the median segment of the pinna, photographed in UV light.
fig. 5 - Detail of the basal segment of the pinna, photographed in UV light.

Bar scale = 1 cm.
characterized by a basal dichotomy with both the branches supporting numerous pinnae further subdivided into linear pinnules with a blunt apex. In some species, anastomosed lateral venations depart from the midrib of the pinnales. The sori are arranged in two rows flanking the midrib of the pinnales and are without indusium (Meyen, 1987; Taylor & Taylor, 1993; Givulescu & Popa, 1998; Harris, 1961; Hirmer & Hoerhammer, 1936; Lundblad, 1950; Van Konijnenburg-van Cittert, 1993).

Description - The sample is composed of part and counterpart of a pinna fragment. The central axis is generally straight, except for a slight curvature in the medial-distal portion (Pl. 1, fig. 1).

The visible part of the rachis, which is interrupted in its basal portion, is about 14 cm long, 3 mm wide at the base and tapers progressively towards the apex (Fig. 3), reaching a minimum width of 1 mm. The pinnules, well observed under UV light (Pl. 1, figs. 3-5), vary in length from 8 to 25 mm and have a width of about 2 mm. They are linear, with an obtuse apex and the basal part runs from not decurrent to lightly decurrent; their attachment on the rachis varying from 75° to 85°. Moreover, they present a well evident midvein. The observations related to the features of the secondary veins course and to the presence of sori tracks were carried out under sun light conditions (the UV light was not useful to identify these characters). Not far from the primary venations of the pinnules some circular structures with a diameter of about 0.5 mm are present. Such structures are faintly visible in the medial portion of the pinnae.

Concerning the secondary venations of the pinnules, they arise at an angle of 50° from the midvein, it was possible to partially observe the venations course, close to the branching point, the rest having not been preserved.

Discussion - The characters observed in the specimen under study, in particular the width of the pinna, the shape and size of the pinnules, the course of primary and secondary veins of the pinnules, and the presence of marks referable to sori track, agree with the features of the family Matoniaceae, and in particular with the genus *Phlebopteris* Brongniart.

PHILOGENETICAL AND STRATIGRAPHICAL CONSIDERATIONS

The Matoniaceae, along with Gleicheniaceae, Dipteridaceae, and Hymenophyllaceae, are among the most ancient lineages of extant leptosporangiate ferns, with an evolutionary history tracing back to the early Mesozoic (Skog, 2001). At present, the Matoniaceae are considered a systematically isolated group having a basal position in the leptosporangiate ferns phylogensis. Even though the remaining taxa of the Matoniaceae are today limited to the Malaysian archipelago (Kato, 1998), numerous Mesozoic remains have been found in every continent, including the Antarctic (Skog, 2001).
CONCLUSIONS

This is the first specimen among the fossils plants found at Pietraroja ascribed to the Filicales. It is also the first finding of the genus Phlebopteris Brongniart in the locality. This finding is of particular paleontological interest as it testifies the presence of Matoniaceae in the Pietraroja site. The previous findings of xerophilous forms like Bennettitales and Araucariaceae (Bravi, 1996), in addition to the presence of Phlebopteris, give important insights in understanding the floristic composition of the lands once surrounding the Cretaceous Pietraroja lagoon.

ACKNOWLEDGEMENTS

The authors acknowledge Evelyn Kustatscher, Guido Roghi and Cesare Papazzoni for improving the manuscript during the peer-review and editorial processes.

REFERENCES

Rijksherbarium/Hortus Botanicus, Leiden, The Netherlands: 289-294

Manuscript received 12 January 2006
Revised manuscript accepted 30 June 2006